Murine models of sickle cell disease and beta-thalassemia demonstrate pulmonary hypertension with distinctive features

1. McCavit, TL. Sickle cell disease. Pediatr Rev 2012; 33: 195–204; quiz 205–196.
Google Scholar | Crossref | Medline2. Simpson, S. Sickle cell disease: a new era. Lancet Haematol 2019; 6: e393–e394.
Google Scholar | Crossref | Medline3. Liu, Y, Jing, F, Yi, W, et al. HO-1(hi) patrolling monocytes protect against vaso-occlusion in sickle cell disease. Blood 2018; 131: 1600–1610.
Google Scholar | Crossref | Medline4. Redinus, K, Baek, JH, Yalamanoglu, A, et al. An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease. JCI Insight 2019; 1–14.
Google Scholar | Crossref | Medline5. Fraidenburg, DR, Machado, RF. Pulmonary hypertension associated with thalassemia syndromes. Ann N Y Acad Sci 2016; 1368: 127–139.
Google Scholar | Crossref | Medline6. Rund, D, Rachmilewitz, E. Beta-thalassemia. N Engl J Med 2005; 353: 1135–1146.
Google Scholar | Crossref | Medline | ISI7. Vallelian, F, Gelderman-Fuhrmann, MP, Schaer, CA, et al. Integrative proteome and transcriptome analysis of extramedullary erythropoiesis and its reversal by transferrin treatment in a mouse model of beta-thalassemia. J Proteome Res 2015; 14: 1089–1100.
Google Scholar | Crossref | Medline8. Mannu, F, Arese, P, Cappellini, MD, et al. Role of hemichrome binding to erythrocyte membrane in the generation of band-3 alterations in beta-thalassemia intermedia erythrocytes. Blood 1995; 86: 2014–2020.
Google Scholar | Crossref | Medline | ISI9. Ginzburg, Y, Rivella, S. Beta-thalassemia: a model for elucidating the dynamic regulation of ineffective erythropoiesis and iron metabolism. Blood 2011; 118: 4321–4330.
Google Scholar | Crossref | Medline10. Gladwin, MT, Kato, GJ. Cardiopulmonary complications of sickle cell disease: role of nitric oxide and hemolytic anemia. Hematology 2005; 2005: 51–57.
Google Scholar | Crossref11. Gladwin, MT, Sachdev, V, Jison, ML, et al. Pulmonary hypertension as a risk factor for death in patients with sickle cell disease. New Engl J Med 2004; 350: 886–895.
Google Scholar | Crossref | Medline | ISI12. Simonneau, G, Montani, D, Celermajer, DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1–13.
Google Scholar | Crossref13. Taylor, JGt, Nolan, VG, Mendelsohn, L, et al. Chronic hyper-hemolysis in sickle cell anemia: association of vascular complications and mortality with less frequent vasoocclusive pain. PLoS One 2008; 3: e2095.
Google Scholar | Crossref | Medline | ISI14. Nouraie, M, Zhang, X, Srisuwananukorn, A, et al. Potential contribution of pulmonary thromboembolic disease in pulmonary hypertension in sickle cell disease. Ann Am Thorac Soc 2020; 17: 899–901.
Google Scholar | Crossref | Medline15. Kato, GJ, Onyekwere, OC, Gladwin, MT. Pulmonary hypertension in sickle cell disease: relevance to children. Pediatric Hematology-Oncology 2007; 24: 159–170.
Google Scholar | Crossref | Medline16. Schwartz, JH, Castellucci, VF, Kandel, ER. Functioning of identified neurons and synapses in abdominal ganglion of aplysia in absence of protein synthesis. J Neurophysiol 1971; 34: 939–953.
Google Scholar | Crossref | Medline | ISI17. Gordeuk, VR, Castro, OL, Machado, RF. Pathophysiology and treatment of pulmonary hypertension in sickle cell disease. Blood 2016; 127: 820–828.
Google Scholar | Crossref | Medline18. Turpin, M, Chantalat-Auger, C, Parent, F, et al. Chronic blood exchange transfusions in the management of pre-capillary pulmonary hypertension complicating sickle cell disease. Eur Respir J 2018; 52: 1–14.
Google Scholar | Crossref | Medline19. Derchi, G, Galanello, R, Bina, P, et al. Prevalence and risk factors for pulmonary arterial hypertension in a large group of beta-thalassemia patients using right heart catheterization: a Webthal study. Circulation 2014; 129: 338–345.
Google Scholar | Crossref | Medline | ISI20. Atichartakarn, V, Chuncharunee, S, Archararit, N, et al. Intravascular hemolysis, vascular endothelial cell activation and thrombophilia in splenectomized patients with hemoglobin E/beta-thalassemia disease. Acta Haematol 2014; 132: 100–107.
Google Scholar | Crossref | Medline21. Atichartakarn, V, Chuncharunee, S, Archararit, N, et al. Prevalence and risk factors of pulmonary hypertension in patients with hemoglobin E/beta-thalassemia disease. Eur J Haematol 2014; 92: 346–353.
Google Scholar22. Manakeng, K, Prasertphol, P, Phongpao, K, et al. Elevated levels of platelet- and red cell-derived extracellular vesicles in transfusion-dependent beta-thalassemia/HbE patients with pulmonary arterial hypertension. Ann Hematol 2019; 98: 281–288.
Google Scholar | Crossref | Medline23. Tuder, RM, Stacher, E, Robinson, J, et al. Pathology of pulmonary hypertension. Clin Chest Med 2013; 34: 639–650.
Google Scholar | Crossref | Medline | ISI24. Ferguson, SK, Redinius, K, Yalamanoglu, A, et al. Effects of living at moderate altitude on pulmonary vascular function and exercise capacity in mice with sickle cell anaemia. J Physiol 2019; 597: 1073–1085.
Google Scholar | Crossref | Medline25. Hsu, LL, Champion, HC, Campbell-Lee, SA, et al. Hemolysis in sickle cell mice causes pulmonary hypertension due to global impairment in nitric oxide bioavailability. Blood 2007; 109: 3088–3098.
Google Scholar | Crossref | Medline | ISI26. Manci, EA, Hillery, CA, Bodian, CA, et al. Pathology of Berkeley sickle cell mice: similarities and differences with human sickle cell disease. Blood 2006; 107: 1651–1658.
Google Scholar | Crossref | Medline27. Gelderman, MP, Baek, JH, Yalamanoglu, A, et al. Reversal of hemochromatosis by apotransferrin in non-transfused and transfused Hbbth3/+ (heterozygous B1/B2 globin gene deletion) mice. Haematologica 2015; 100: 611–622.
Google Scholar | Crossref | Medline28. Grundy, D. Principles and standards for reporting animal experiments in The Journal of Physiology and Experimental Physiology. The Journal of Physiology 2015; 593: 2547–2549.
Google Scholar | Crossref | Medline29. Buehler, PW, Baek, JH, Lisk, C, et al . Free hemolgobin induction of pulmonary vascular disease: evidence for and inflammatory mechanism. Am J Physiol Lung Cell Mol Physiol 2012; 303: 312–326.
Google Scholar | Crossref | Medline30. Stacher, E, Graham, BB, Hunt, JM, et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 2012; 186: 261–272.
Google Scholar | Crossref | Medline | ISI31. Catala, A, Youssef, LA, Reisz, JA, et al. Metabolic reprogramming of mouse bone marrow derived macrophages following erythrophagocytosis. Front Physiol 2020; 11: 396.
Google Scholar | Crossref | Medline32. Fox, BM, Gil, HW, Kirkbride-Romeo, L, et al. Metabolomics assessment reveals oxidative stress and altered energy production in the heart after ischemic acute kidney injury in mice. Kidney Int 2019; 95: 590–610.
Google Scholar | Crossref | Medline33. Graham, BB, Kumar, R, Mickael, C, et al. Vascular adaptation of the right ventricle in experimental pulmonary hypertension. Am J Respir Cell Mol Biol 2018; 59: 479–489.
Google Scholar | Crossref | Medline34. Nemkov, T, Reisz, JA, Gehrke, S, et al. High-throughput metabolomics: isocratic and gradient mass spectrometry-based methods. Methods Mol Biol 2019; 1978: 13–26.
Google Scholar | Crossref | Medline35. Pang, Z, Chong, J, Zhou, G, et al. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. Epub ahead of print 22 May 2021. DOI: 10.1093/nar/gkab382.
Google Scholar | Crossref36. D'Alessandro, A, El Kasmi, KC, Plecita-, Hlavata L, et al. Hallmarks of pulmonary hypertension: mesenchymal and inflammatory cell metabolic reprogramming. Antioxid Redox Signal 2018; 28: 230–250.
Google Scholar | Crossref | Medline37. Zhang, H, Wang, D, Li, M, et al. Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a microRNA-124/PTBP1 (polypyrimidine tract binding protein 1)/pyruvate kinase muscle axis. Circulation 2017; 136: 2468–2485.
Google Scholar | Crossref | Medline38. Li, M, Riddle, S, Zhang, H, et al. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation 2016; 134: 1105–1121.
Google Scholar | Crossref | Medline | ISI39. Li, M, Riddle, S, Kumar, S, et al. Microenvironmental regulation of macrophage transcriptomic and metabolomic profiles in pulmonary hypertension. Front Immunol 2021; 12: 640718.
Google Scholar | Crossref | Medline40. Hernandez-Saavedra, D, Sanders, L, Freeman, S, et al. Stable isotope metabolomics of pulmonary artery smooth muscle and endothelial cells in pulmonary hypertension and with TGF-beta treatment. Sci Rep 2020; 10: 413.
Google Scholar | Crossref | Medline41. Kitagawa, A, Kizub, I, Jacob, C, et al. CRISPR-mediated single nucleotide polymorphism modeling in rats reveals insight into reduced cardiovascular risk associated with Mediterranean G6PD variant. Hypertension 2020; 76: 523–532.
Google Scholar | Crossref | Medline42. Machado, RF, Gladwin, MT. Pulmonary hypertension in hemolytic disorders: pulmonary vascular disease: the global perspective. Chest 2010; 137: 30S–38S.
Google Scholar | Crossref | Medline | ISI43. Sachdev, V, Kato, GJ, Gibbs, JS, et al. Echocardiographic markers of elevated pulmonary pressure and left ventricular diastolic dysfunction are associated with exercise intolerance in adults and adolescents with homozygous sickle cell anemia in the United States and United Kingdom. Circulation 2011; 124: 1452–1460.
Google Scholar | Crossref | Medline | ISI44. Zhang, X, Zhang, W, Ma, SF, et al. Hypoxic response contributes to altered gene expression and precapillary pulmonary hypertension in patients with sickle cell disease. Circulation 2014; 129: 1650–1658.
Google Scholar | Crossref | Medline | ISI45. Lim, MY, Ataga, KI, Key, NS. Hemostatic abnormalities in sickle cell disease. Curr Opin Hematol 2013; 20: 472–477.
Google Scholar | Crossref | Medline | ISI46. D'Alonzo, GE, Barst, RJ, Ayres, SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 1991; 115: 343–349.
Google Scholar | Crossref | Medline | ISI47. Li, H, Rybicki, AC, Suzuka, SM, et al. Transferrin therapy ameliorates disease in beta-thalassemic mice. Nat Med 2010; 16: 177–182.
Google Scholar | Crossref | Medline48. Low, PS. Infantile spasms – a clinical perspective. J Singapore Paediatr Soc 1989; 31: 147–152.

留言 (0)

沒有登入
gif