Evidence supporting a role for circulating macrophages in the regression of vascular remodeling following sub-chronic exposure to hemoglobin plus hypoxia

1. Tuder, RM, Stacher, E, Robinson, J, et al. Pathology of pulmonary hypertension. Clin Chest Med 2013; 34: 639–650.
Google Scholar | Crossref | Medline | ISI2. Simonneau, G, Montani, D, Celermajer, DS, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension. Eur Respir J 2019; 53: 1801913.
Google Scholar | Crossref | Medline3. Gordeuk, VR, Castro, OL, Machado, RF. Pathophysiology and treatment of pulmonary hypertension in sickle cell disease. Blood 2016; 127: 820–828.
Google Scholar | Crossref | Medline4. Rother, RP, Bell, L, Hillmen, P, et al. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA 2005; 293: 1653–1662.
Google Scholar | Crossref | Medline | ISI5. Buehler, PW, Baek, JH, Lisk, C, et al . Free hemolgobin induction of pulmonary vascular disease: evidence for and inflammatory mechanism. Am J Physiol Lung Cell Mol Physiol 2012; 303: 312–326.
Google Scholar | Crossref | Medline6. Irwin, DC, Hyen Baek, J, Hassell, K, et al. Hemoglobin-induced lung vascular oxidation, inflammation, and remodeling contribute to the progression of hypoxic pulmonary hypertension and is attenuated in rats with repeated-dose haptoglobin administration. Free Radic Biol Med 2015; 82: 50–62.
Google Scholar | Crossref | Medline7. Redinus, K, Baek, JH, Yalamanoglu, A, et al. An Hb-mediated circulating macrophage contributing to pulmonary vascular remodeling in sickle cell disease. JCI Insight 2019; 4: e127860.
Google Scholar | Crossref | Medline8. Brissot, P, Ropert, M, Le Lan, C, et al. Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 2012; 1820: 403–410.
Google Scholar | Crossref | Medline9. Highsmith, FA, Driscoll, CM, Chung, BC, et al. An improved process for the production of sterile modified haemoglobin solutions. Biologicals 1997; 25: 257–268.
Google Scholar | Crossref | Medline10. Lindsey, ML, Kassiri, Z, Virag, JAI, et al. Guidelines for measuring cardiac physiology in mice. Am J Physiol Heart Circ Physiol 2018; 314: H733–H752.
Google Scholar | Crossref | Medline11. Cavasin, MA, Demos-Davies, K, Horn, TR, et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res 2012; 110: 739–748.
Google Scholar | Crossref | Medline | ISI12. Kwon, MS, Woo, SK, Kurland, DB, et al. Methemoglobin is an endogenous toll-like receptor 4 ligand-relevance to subarachnoid hemorrhage. Int J Mol Sci 2015; 16: 5028–5046.
Google Scholar | Crossref | Medline | ISI13. Sakao, S, Tatsumi, K, Voelkel, NF. Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2010; 43: 629–634.
Google Scholar | Crossref | Medline | ISI14. Sluiter, I, van Heijst, A, Haasdijk, R, et al. Reversal of pulmonary vascular remodeling in pulmonary hypertensive rats. Exp Mol Pathol 2012; 93: 66–73.
Google Scholar | Crossref | Medline15. Christou, H, Hudalla, H, Michael, Z, et al. Impaired pulmonary arterial vasoconstriction and nitric oxide-mediated relaxation underlie severe pulmonary hypertension in the Sugen-hypoxia rat model. J Pharmacol Exp Ther 2018; 364: 258–274.
Google Scholar | Crossref | Medline16. Stenmark, KR, Meyrick, B, Galie, N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol 2009; 297: L1013–L1032.
Google Scholar | Crossref | Medline | ISI17. Sztuka, K, Jasinska-Stroschein, M. Animal models of pulmonary arterial hypertension: a systematic review and meta-analysis of data from 6126 animals. Pharmacol Res 2017; 125: 201–214.
Google Scholar | Crossref | Medline18. Willis, GR, Fernandez-Gonzalez, A, Reis, M, et al. Macrophage immunomodulation: the gatekeeper for mesenchymal stem cell derived-exosomes in pulmonary arterial hypertension? Int J Mol Sci 2018; 19: 2534.
Google Scholar | Crossref | Medline19. Zawia, A, Arnold, ND, West, L, et al. Altered macrophage polarization induces experimental pulmonary hypertension and is observed in patients with pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 2021; 41: 430–445.
Google Scholar | Medline20. Hashimoto, D, Chow, A, Noizat, C, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 2013; 38: 792–804.
Google Scholar | Crossref | Medline | ISI21. Pugliese, SC, Kumar, S, Janssen, WJ, et al. A time- and compartment-specific activation of lung macrophages in hypoxic pulmonary hypertension. J Immunol 2017; 198: 4802–4812.
Google Scholar | Crossref | Medline22. Mindt, M, Risse, JM, Gruss, H, et al. One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 2018; 8: 12895.
Google Scholar | Crossref | Medline23. Pugliese, SC, Poth, JM, Fini, MA, et al. The role of inflammation in hypoxic pulmonary hypertension: from cellular mechanisms to clinical phenotypes. Am J Physiol Lung Cell Mol Physiol 2015; 308: L229–L252.
Google Scholar | Crossref | Medline | ISI24. Ntokou, A, Dave, JM, Kauffman, AC, et al. Macrophage-derived PDGF-B induces muscularization in murine and human pulmonary hypertension. JCI Insight 2021; 6: e139067.
Google Scholar | Crossref | Medline25. Florentin, J, Coppin, E, Vasamsetti, SB, et al. Inflammatory macrophage expansion in pulmonary hypertension depends upon mobilization of blood-borne monocytes. J Immunol 2018; 200: 3612–3625.
Google Scholar | Crossref | Medline26. Amsellem, V, Abid, S, Poupel, L, et al. Roles for the CX3CL1/CX3CR1 and CCL2/CCR2 chemokine systems in hypoxic pulmonary hypertension. Am J Respir Cell Mol Biol 2017; 56: 597–608.
Google Scholar | Crossref | Medline27. Imai, T, Morita, T, Shindo, T, et al. Vascular smooth muscle cell-directed overexpression of heme oxygenase-1 elevates blood pressure through attenuation of nitric oxide-induced vasodilation in mice. Circ Res 2001; 89: 55–62.
Google Scholar | Crossref | Medline | ISI28. Polizio, AH, Santa-Cruz, DM, Balestrasse, KB, et al. Heme oxygenase-1 overexpression fails to attenuate hypertension when the nitric oxide synthase system is not fully operative. Pharmacology 2011; 87: 341–349.
Google Scholar | Crossref | Medline29. Christou, H, Morita, T, Hsieh, C-M, et al. Prevention of hypoxia-induced pulmonary hypertension by enhancement of endogenous heme oxygenase-1 in the rat. Circ Res 2000; 86: 1224–1229.
Google Scholar | Crossref | Medline30. Lee, TS, Chang, CC, Zhu, Y, et al. Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation 2004; 110: 1296–1302.
Google Scholar | Crossref | Medline | ISI31. Zaynagetdinov, R, Sherrill, TP, Kendall, PL, et al. Identification of myeloid cell subsets in murine lungs using flow cytometry. Am J Respir Cell Mol Biol 2013; 49: 180–189.
Google Scholar | Crossref | Medline32. Majesky, MW, Horita, H, Ostriker, A, et al. Differentiated smooth muscle cells generate a subpopulation of resident vascular progenitor cells in the adventitia regulated by Klf4. Circ Res 2017; 120: 296–311.
Google Scholar | Crossref | Medline33. McMurtry, MS, Archer, SL, Altieri, DC, et al. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 2005; 115: 1479–1491.
Google Scholar | Crossref | Medline | ISI34. Dai, Z, Zhu, MM, Peng, Y, et al. Therapeutic targeting of vascular remodeling and right heart failure in pulmonary arterial hypertension with a HIF-2alpha inhibitor. Am J Respir Crit Care Med 2018; 198: 1423–1434.
Google Scholar | Crossref | Medline35. Balegadde, AV, Vijan, V, Thachathodiyl, R. A case series of young patients with completely reversed severe pulmonary hypertension. J Clin Diagn Res 2017; 11: OR04–OR05.
Google Scholar | Medline

留言 (0)

沒有登入
gif