Risk of Hematologic Events With Coadministration of Methotrexate and the Breast Cancer Resistance Protein Inhibitor Febuxostat

1. Goodman, SM, Cronstein, BN, Bykerk, VP. Outcomes related to methotrexate dose and route of administration in patients with rheumatoid arthritis: a systematic literature review. Clin Exp Rheumatol. 2015;33(2):272-278.
Google Scholar | Medline2. NHMJ . Cancer chemotherapy: targeting folic acid synthesis. Cancer Manag Res. 2010;2:293-301. doi:10.2147/CMR.S10043.
Google Scholar | Crossref | Medline3. Berthelot, JM, Maugars, Y, Hamidou, M, et al. Pancytopenia and severe cytopenia induced by low-dose methotrexate. Rev Rhum Engl Ed. 1995;62(7-8):477-486.
Google Scholar | Medline4. Howard, SC, McCormick, J, Pui, C, Buddington, RK, Harvey, RD. Preventing and managing toxicities of high-dose methotrexate. Oncologist. 2016;21(12):1471-1482. doi:10.1634/theoncologist.2015-0164.
Google Scholar | Crossref | Medline5. Svanström, H, Lund, M, Melbye, M, Pasternak, B. Concomitant use of low-dose methotrexate and NSAIDs and the risk of serious adverse events among patients with rheumatoid arthritis. Pharmacoepidemiol Drug Saf. 2018;27(8):885-893. doi:10.1002/pds.4555.
Google Scholar | Crossref | Medline6. Mori, S, Hidaka, M, Kawakita, T, et al. Factors associated with myelosuppression related to low-dose methotrexate therapy for inflammatory rheumatic diseases. PLoS One. 2016;11(4). doi:10.1371/journal.pone.0154744.
Google Scholar | Crossref7. Mitsuboshi, S. Risk of haematological events and preventive effect of folic acid in methotrexate users with chronic kidney disease and rheumatoid arthritis: analysis of the Japanese Adverse Drug Event Report database. Br J Clin Pharmacol. 2021;87(5):2286-2289. doi:10.1111/bcp.14641.
Google Scholar | Crossref | Medline8. Bourré-Tessier, J, Haraoui, B. Methotrexate drug interactions in the treatment of rheumatoid arthritis: a systematic review. J Rheumatol. 2010;37(7):1416-1421. doi:10.3899/jrheum.090153.
Google Scholar | Crossref | Medline9. Ivanyuk, A, Livio, F, Biollaz, J, Buclin, T. Renal drug transporters and drug interactions. Clin Pharmacokinet. 2017;56(8):825-892. doi:10.1007/s40262-017-0506-8.
Google Scholar | Crossref | Medline10. Hira, D, Terada, T. BCRP/ABCG2 and high-alert medications: biochemical, pharmacokinetic, pharmacogenetic, and clinical implications. Biochem Pharmacol. 2018;147:201-210. doi:10.1016/j.bcp.2017.10.004.
Google Scholar | Crossref | Medline11. FitzGerald, JD, Dalbeth, N, Mikuls, T, et al. 2020 American College of Rheumatology Guideline for the Management of Gout. Arthritis Care Res. 2020;72(6):744-760. doi:10.1002/acr.24180
Google Scholar | Crossref12. Spina, M, Nagy, Z, Ribera, JM, et al. FLORENCE: a randomized, double-blind, phase III pivotal study of febuxostat versus allopurinol for the prevention of tumor lysis syndrome (TLS) in patients with hematologic malignancies at intermediate to high TLS risk. Ann Oncol. 2015;26(10):2155-2161. doi:10.1093/annonc/mdv317.
Google Scholar | Crossref | Medline13. Chen, CC, Chen, CC, Chang, CJ, et al. Hypersensitivity and cardiovascular risks related to allopurinol and febuxostat therapy in Asians: a population-based cohort study and meta-analysis. Clin Pharmacol Ther. 2019;106(2):391-401. doi:10.1002/cpt.1377.
Google Scholar | Crossref | Medline14. Lehtisalo, M, Keskitalo, JE, Tornio, A, et al. Febuxostat, but not allopurinol, markedly raises the plasma concentrations of the breast cancer resistance protein substrate rosuvastatin. Clin Transl Sci. 2020;13(6):1236-1243. doi:10.1111/cts.12809.
Google Scholar | Crossref | Medline15. Miyata, H, Takada, T, Toyoda, Y, Matsuo, H, Ichida, K, Suzuki, H. Identification of febuxostat as a new strong ABCG2 inhibitor: potential applications and risks in clinical situations. Front Pharmacol. 2016;7:518. doi:10.3389/fphar.2016.00518.
Google Scholar | Crossref | Medline16. Ikemura, K, Hiramatsu, S, ichi Shinogi, Y, et al. Concomitant febuxostat enhances methotrexate-induced hepatotoxicity by inhibiting breast cancer resistance protein. Sci Rep. 2019;9(1):20359. doi:10.1038/s41598-019-56900-2.
Google Scholar | Crossref | Medline17. Kanbayashi, Y, Nomura, K, Okamoto, K, et al. Statistical examination to determine whether only 48-h value for serum concentration during high-dose methotrexate therapy is a predictor for clinical adverse events using ordered logistic regression analysis. Ann Hematol. 2010;89(10):965-969. doi:10.1007/s00277-010-0965-6.
Google Scholar | Crossref | Medline18. Schmiegelow, K. Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol. 2009;146(5):489-503. doi:10.1111/j.1365-2141.2009.07765.x.
Google Scholar | Crossref | Medline19. Bannwarth, B, Péhourcq, F, Schaeverbeke, T, Dehais, J. Clinical pharmacokinetics of low-dose pulse methotrexate in rheumatoid arthritis. Clin Pharmacokinet. 1996;30(3):194-210. doi:10.2165/00003088-199630030-00002.
Google Scholar | Crossref | Medline20. Wilkinson, DG. Allopurinol and agranulocytosis. Lancet. 1977;2(8051):1282-1283. doi:10.1016/S0140-6736(77)92683-6.
Google Scholar | Crossref | Medline21. Fleischmann, R. Safety and efficacy of disease-modifying antirheumatic agents in rheumatoid arthritis and juvenile rheumatoid arthritis. Expert Opin Drug Saf. 2003;2(4):347-365. doi:10.1517/14740338.2.4.347.
Google Scholar | Crossref | Medline22. Strang, A, Pullar, T. Methotrexate toxicity induced by acute renal failure. J R Soc Med. 2004;97(11):536-537. doi:10.1258/jrsm.97.11.536.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif