Machine Learning for Predicting Motor Improvement After Acute Subcortical Infarction Using Baseline Whole Brain Volumes

1. Winters, C, van Wegen, EE, Daffertshofer, A, et al. Generalizability of the proportional recovery model for the upper extremity after an ischemic stroke. Neurorehabil Neural Repair. 2015;29:614-622.
Google Scholar | SAGE Journals | ISI2. Prabhakaran, S, Zarahn, E, Riley, C, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22:64-71.
Google Scholar | SAGE Journals | ISI3. Smith, MC, Byblow, WD, Barber, PA, et al. Proportional recovery from lower limb motor impairment after stroke. Stroke. 2017;48:1400-1403.
Google Scholar | Crossref | Medline | ISI4. Hope, TMH, Friston, K, Price, CJ, et al. Recovery after stroke: Not so proportional after all?. Brain. 2019;142:15-22.
Google Scholar | Crossref | Medline5. Feng, W, Wang, J, Chhatbar, PY, et al. Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Ann Neurol. 2015;78:860-870.
Google Scholar | Crossref | Medline | ISI6. Granziera, C, Daducci, A, Meskaldji, DE, et al. A new early and automated MRI-based predictor of motor improvement after stroke. Neurology. 2012;79:39-46.
Google Scholar | Crossref | Medline7. Liu, G, Tan, S, Dang, C, et al. Motor Recovery Prediction With Clinical Assessment and Local Diffusion Homogeneity After Acute Subcortical Infarction. Stroke. 2017;48:2121-2128.
Google Scholar | Crossref | Medline8. Buch, ER, Rizk, S, Nicolo, P, et al. Predicting motor improvement after stroke with clinical assessment and diffusion tensor imaging. Neurology. 2016;86:1924-1925.
Google Scholar | Crossref | Medline9. Rehme, AK, Volz, LJ, Feis, DL, et al. Individual prediction of chronic motor outcome in the acute post-stroke stage: Behavioral parameters versus functional imaging. Hum Brain Mapp. 2015;36:4553-4565.
Google Scholar | Crossref | Medline10. Gauthier, LV, Taub, E, Mark, VW, et al. Improvement after constraint-induced movement therapy is independent of infarct location in chronic stroke patients. Stroke. 2009;40:2468-2472.
Google Scholar | Crossref | Medline | ISI11. Lo, R, Gitelman, D, Levy, R, et al. Identification of critical areas for motor function recovery in chronic stroke subjects using voxel-based lesion symptom mapping. Neuroimage. 2010;49:9-18.
Google Scholar | Crossref | Medline | ISI12. Siegel, JS, Ramsey, LE, Snyder, AZ, et al. Disruptions of network connectivity predict impairment in multiple behavioral domains after stroke. Proc Natl Acad Sci USA. 2016;113:E4367-E4376.
Google Scholar | Crossref | Medline | ISI13. Burke, E, Dobkin, BH, Noser, EA, et al. Predictors and biomarkers of treatment gains in a clinical stroke trial targeting the lower extremity. Stroke. 2014;45:2379-2384.
Google Scholar | Crossref | Medline | ISI14. Kim, B, Winstein, C. Can neurological biomarkers of brain impairment be used to predict poststroke motor recovery? A systematic review. Neurorehabil Neural Repair. 2017;31:3-24.
Google Scholar | SAGE Journals | ISI15. Quallo, MM, Price, CJ, Ueno, K, et al. Gray and white matter changes associated with tool-use learning in macaque monkeys. Proc Natl Acad Sci USA. 2009;106:18379-18384.
Google Scholar | Crossref | Medline | ISI16. Gryga, M, Taubert, M, Dukart, J, et al. Bidirectional gray matter changes after complex motor skill learning. Front Syst Neurosci. 2012;6:37.
Google Scholar | Crossref | Medline17. Aljondi, R, Szoeke, C, Steward, C, et al. A decade of changes in brain volume and cognition. Brain Imaging Behav. 2019;13:554-563.
Google Scholar | Crossref | Medline18. Dekker, I, Eijlers, AJ, Popescu, V, et al. Predicting clinical progression in multiple sclerosis after 6 and 12 years. Eur J Neurol. 2019;26:893-902.
Google Scholar | Crossref | Medline19. Obermeyer, Z, Emanuel, EJ. Predicting the future—Big data, machine learning, and clinical medicine. N Engl J Med. 2016;375:1216-1219.
Google Scholar | Crossref | Medline20. He, H, Garcia, EA. Learning from imbalanced data. IEEE Trans Knowl Data Eng. 2009;21:1263-1284.
Google Scholar | Crossref | ISI21. Li, J, Cheng, K, Wang, S, et al. Feature selection: A data perspective. ACM Comput Surv. 2017;50:1-45.
Google Scholar | Crossref22. Sagi, O, Rokach, L. Ensemble learning: A survey. Wiley Interdiscip Rev Data Min Knowl Discov. 2018;8:e1249.
Google Scholar | Crossref23. Liu, G, Tan, S, Peng, K, et al. Network change in the ipsilesional cerebellum is correlated with motor recovery following unilateral pontine infarction. Eur J Neurol. 2019;26:1266-1273.
Google Scholar | Crossref | Medline24. Liu, G, Dang, C, Chen, X, et al. Structural remodeling of white matter in the contralesional hemisphere is correlated with early motor recovery in patients with subcortical infarction. Restor Neurol Neurosci. 2015;33:309-319.
Google Scholar | Crossref | Medline25. Liu, G, Dang, C, Chen, X, et al. Increased spontaneous neuronal activity in structurally damaged cortex is correlated with early motor recovery in patients with subcortical infarction. Eur J Neurol. 2015;22:1540-1547.
Google Scholar | Crossref | Medline26. Mori, S, Wu, D, Ceritoglu, C, et al. MRICloud: Delivering high-throughput MRI neuroinformatics as cloud-based software as a service. Comput Sci Eng. 2016;18:21-35.
Google Scholar | Crossref27. Tang, X, Oishi, K, Faria, AV, et al. Bayesian parameter estimation and segmentation in the multi-atlas random orbit model. PLoS One. 2013;8:e65591.
Google Scholar | Crossref | Medline28. Tang, X, Crocetti, D, Kutten, K, et al. Segmentation of brain magnetic resonance images based on multi-atlas likelihood fusion: Testing using data with a broad range of anatomical and photometric profiles. Front Neurosci. 2015;9:61.
Google Scholar | Crossref | Medline29. Chawla, NV, Bowyer, KW, Hall, LO, Kegelmeyer, WP. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res. 2002;16:321-357.
Google Scholar | Crossref | ISI30. Brown, G, Pocock, A, Zhao, MJ, et al. Conditional likelihood maximisation: A unifying framework for information theoretic feature selection. J Mach Learn Res. 2012;13:27-66.
Google Scholar | ISI31. Robnik-Šikonja, M, Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach Learn. 2003;53:23-69.
Google Scholar | Crossref | ISI32. Breiman, L . Bagging predictors. Mach Learn. 1996;24:123-140.
Google Scholar | Crossref | ISI33. Friedman, JH . Greedy function approximation: A gradient boosting machine. Ann Stat. 2001:1189-1232.
Google Scholar | Crossref | ISI34. Pedregosa, F, Varoquaux, G, Gramfort, A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011;12:2825-2830.
Google Scholar | ISI35. Byblow, WD, Stinear, CM, Barber, PA, et al. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78:848-859.
Google Scholar | Crossref | Medline | ISI36. Stinear, C . Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9:1228-1232.
Google Scholar | Crossref | Medline | ISI37. Escobar, I, Xu, J, Jackson, CW, Perez-Pinzon, MA. Altered neural networks in the Papez Circuit: Implications for cognitive dysfunction after cerebral ischemia. J Alzheim Dis. 2019;67:425-446.
Google Scholar | Crossref | Medline38. Leung, AW, Cheng, SK, Mak, AK, et al. Functional gain in hemorrhagic stroke patients is predicted by functional level and cognitive abilities measured at hospital admission. NeuroRehabilitation. 2010;27:351-358.
Google Scholar | Crossref | Medline39. Öneş, K, Yalçinkaya, EY, Toklu, BÇ, Çağlar, N. Effects of age, gender, and cognitive, functional and motor status on functional outcomes of stroke rehabilitation. NeuroRehabilitation. 2009;25:241-249.
Google Scholar | Crossref | Medline | ISI40. Cirstea, CM, Ptito, A, Levin, MF. Feedback and cognition in arm motor skill reacquisition after stroke. Stroke. 2006;37:1237-1242.
Google Scholar | Crossref | Medline | ISI41. McEwen, SE, Huijbregts, MP, Ryan, JD, Polatajko, HJ. Cognitive strategy use to enhance motor skill acquisition post-stroke: A critical review. Brain Inj. 2009;23:263-277.
Google Scholar | Crossref | Medline | ISI42. Fan, F, Zhu, C, Chen, H, et al. Dynamic brain structural changes after left hemisphere subcortical stroke. Hum Brain Mapp. 2013;34:1872-1881.
Google Scholar | Crossref | Medline | ISI43. Cai, J, Ji, Q, Xin, R, et al. Contralesional cortical structural reorganization contributes to motor recovery after sub-cortical stroke: A longitudinal voxel-based morphometry study. Front Hum Neurosci. 2016;10:393.
Google Scholar | Crossref | Medline44. Liu, H, Peng, X, Dahmani, L, et al. Patterns of motor recovery and structural neuroplasticity after basal ganglia infarcts. Neurology. 2020;95:e1174-e1187.
Google Scholar | Crossref | Medline45. Gauthier, LV, Taub, E, Perkins, C, et al. Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke. 2008;39:1520-1525.
Google Scholar | Crossref | Medline | ISI46. Wilkins, KB, Owen, M, Ingo, C, et al. Neural plasticity in moderate to severe chronic stroke following a device-assisted task-specific arm/hand intervention. Front Neurol. 2017;8:284.
Google Scholar | Crossref | Medline47. Weimar, C, Ziegler, A, Konig, IR, et al. Predicting functional outcome and survival after acute ischemic stroke. J Neurol. 2002;249:888-895.
Google Scholar | Crossref | Medline | ISI48. Stinear, CM, Byblow, WD, Ackerley, SJ, et al. PREP2: A biomarker‐based algorithm for predicting upper limb function after stroke. Ann Clin Transl Neurol. 2017;4:811-820.
Google Scholar | Crossref | Medline49. Tozlu, C, Edwards, D, Boes, A, et al. Machine learning methods predict individual upper-limb motor impairment following therapy in chronic stroke. Neurorehabil Neural Repair. 2020;34:428-439.
Google Scholar | SAGE Journals | ISI

留言 (0)

沒有登入
gif