Brain Networks With Modified Connectivity in Patients With Neuropathic Pain and Spinal Cord Injury

1. Lee, S, Zhao, X, Hatch, M, Chun, S, Chang, E. Central neuropathic pain in spinal cord injury. Crit Rev Phys Rehabil Med. 2013;25(3-4):159‐172.
Google Scholar | Crossref | Medline2. Hagen, EM, Rekand, T. Management of neuropathic pain associated with spinal cord injury. Pain Ther. 2015;4(1):51‐65.
Google Scholar | Crossref | Medline3. Athanasiou, A, Terzopoulos, N, Pandria, N, et al. Functional brain connectivity during multiple motor imagery tasks in spinal cord injury. Neural Plast. 2018;2018:16‐21.
Google Scholar | Crossref4. Vuckovic, A, Hasan, MA, Fraser, M, Conway, BA, Nasseroleslami, B, Allan, DB. Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain. 2014;15(6):645‐655.
Google Scholar | Crossref | Medline5. Freund, P, Curt, A, Friston, K, Thompson, A. Tracking changes following spinal cord injury: Insights from neuroimaging. Neuroscientist. 2013;19(2):116‐128.
Google Scholar | SAGE Journals | ISI6. Freund, P, Weiskopf, N, Ashburner, J, et al. MRI investigation of the sensorimotor cortex and the corticospinal tract after acute spinal cord injury: A prospective longitudinal study. Lancet Neurol. 2013;12(9):873‐881.
Google Scholar | Crossref | Medline7. Flodin, P, Martinsen, S, Altawil, R, et al. Intrinsic brain connectivity in chronic pain: A resting-state fMRI study in patients with rheumatoid arthritis. Front Hum Neurosci. 2016;10(MAR2016).
Google Scholar | Medline8. Lee, MJ, Park, BY, Cho, S, Kim, ST, Park, H, Chung, CS. Increased connectivity of pain matrix in chronic migraine: A resting-state functional MRI study. J Headache Pain. 2019;20(1).
Google Scholar | Crossref9. Mutso, AA, Petre, B, Huang, L, et al. Reorganization of hippocampal functional connectivity with transition to chronic back pain. J Neurophysiol. 2014;111(5):1065‐1076.
Google Scholar | Crossref | Medline10. Hawasli, AH, Rutlin, J, Roland, JL, et al. Spinal cord injury disrupts resting-state networks in the human brain. J Neurotrauma. 2018;35(6):864‐873.
Google Scholar | Crossref | Medline11. Oni-Orisan, A, Kaushal, M, Li, W, et al. Alterations in cortical sensorimotor connectivity following complete cervical spinal cord injury: A prospective resting-state fMRI study. PLoS One. 2016;11(3):1‐13.
Google Scholar | Crossref12. Hou, J, Xiang, Z, Yan, R, et al. Motor recovery at 6 months after admission is related to structural and functional reorganization of the spine and brain in patients with spinal cord injury. Hum Brain Mapp. 2016;37(6):2195‐2209.
Google Scholar | Crossref | Medline13. Min, Y-S, Chang, Y, Park, JW, et al. Change of brain functional connectivity in patients with spinal cord injury: graph theory based approach. Ann Rehabil Med. 2015;39(3):374‐383.
Google Scholar | Crossref | Medline14. Nickel, MM, Ta Dinh, S, May, ES, et al. Neural oscillations and connectivity characterizing the state of tonic experimental pain in humans. Hum Brain Mapp. 2019(May):1‐13.
Google Scholar15. Ye, Q, Yan, D, Yao, M, Lou, W, Peng, W. Hyperexcitability of cortical oscillations in patients with somatoform pain disorder: resting-state EEG study. Neural Plast. 2019;2019:2687150.
Google Scholar | Crossref | Medline16. De Vico Fallani, F, Astolfi, L, Cincotti, F, et al. Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Hum Brain Mapp. 2007;28(12):1334‐1346.
Google Scholar | Crossref | Medline17. De Vico Fallani, F, Astolfi, L, Cincotti, F, et al. Brain connectivity structure in spinal cord injured: Evaluation by graph analysis. Annu Int Conf IEEE Eng Med Biol - Proc. Published online 2006:988‐991.
Google Scholar | Crossref18. Cramer, SC, Lastra, L, Lacourse, MG, Cohen, MJ. Brain motor system function after chronic, complete spinal cord injury. Brain. 2005;128(12):2941‐2950.
Google Scholar | Crossref | Medline19. Kaushal, M, Oni-orisan, A, Chen, G, et al. Large-scale network analysis of whole-brain resting-state functional connectivity in spinal cord injury: A comparative study. Brain Connect. 2017;7(7):413‐423.
Google Scholar | Crossref | Medline20. Wrigley, PJ, Gustin, SM, Macey, PM, et al. Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex. 2009;19(1):224‐232.
Google Scholar | Crossref | Medline | ISI21. Hou, QJ, Sun, T, Xiang, Z, Zhang, J, Zhang, Z. Alterations of resting-state regional and network-level neural function after acute spinal cord injury. Neuroscience. 2014;277:446‐454.
Google Scholar | Crossref | Medline22. Rao, JS, Liu, Z, Zhao, C, et al. Longitudinal evaluation of functional connectivity variation in the monkey sensorimotor network induced by spinal cord injury. Acta Physiol. 2016;217(2):164‐173.
Google Scholar | Crossref | Medline23. Kaushal, M, Oni-orisan, A, Chen, G, et al. Evaluation of whole-brain resting-state functional connectivity in spinal cord injury – a large-scale network analysis using network-based statistic. J Neurotrauma. 2016;34(6):1‐16.
Google Scholar | Medline24. Burns, S, Biering-Sørensen, F, Donovan, W, et al. International standards for neurological classification of spinal cord injury, revised 2011. Top Spinal Cord Inj Rehabil. 2012;18(1):85‐99.
Google Scholar | Crossref | Medline25. Lesser, R, Picton, TW. American Electroencephalographic Society Guidelines for Standard Electrode Position Nomenclature. J Clin Neurophysiol. 1991;8(2):200‐202.
Google Scholar | Crossref | Medline26. Frølich, L, Dowding, I. Removal of muscular artifacts in EEG signals: a comparison of linear decomposition methods. Brain Inform. 2018;5(1):13‐22.
Google Scholar | Crossref | Medline27. Dimigen, O . Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage. 2020;207(January 2019):116117.
Google Scholar | Crossref | Medline28. Chaumon, M, Bishop, DVM, Busch, NA. A practical guide to the selection of independent components of the electroencephalogram for artifact correction. J Neurosci Methods. 2015;250:47‐63.
Google Scholar | Crossref | Medline | ISI29. Daut, RL, Cleeland, CS, Flanery, RC. Development of the Wisconsin Brief Pain Questionnaire to assess pain in cancer and other diseases. Pain. 1983;17(2):197‐210.
Google Scholar | Crossref | Medline | ISI30. Lachaux, J, Rodriguez, E, Martinerie, J, Varela, FJ. Measuring phase synchrony in brain signals. 1999;208:1‐15.
Google Scholar31. Jian, W, Chen, M, McFarland, DJ. EEG based zero-phase phase-locking value (PLV) and effects of spatial filtering during actual movement. Brain Res Bull. 2017;130:156‐164.
Google Scholar | Crossref | Medline32. Hamner, B, Leeb, R, Tavella, M, Del, R, Millán, J. Phase-based features for motor imagery brain-computer interfaces. 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; ; IEEE; 2578‐2581.
Google Scholar33. Bakhshayesh, H, Fitzgibbon, SP, Janani, AS, Grummett, TS, Pope, KJ. Detecting synchrony in EEG: A comparative study of functional connectivity measures. Comput Biol Med. 2019;105:1‐15.
Google Scholar | Crossref | Medline34. Fourier, BA . Hilbert- and wavelet-based signal analysis: are they really different approaches ? J Neurosci Methods. 2004;137:321‐332.
Google Scholar | Crossref | Medline35. Strogatz DJW&, SH . Collective dynamics of ‘small-world’ networks Duncan. Conserv Biol. 2018;32(2):287‐293.
Google Scholar | Medline36. Latora, V, Marchiori, M. Efficient behavior of small-world networks. Phys Rev Lett. 2001;87(19):198701-1–198701-4.
Google Scholar | Crossref | Medline37. Hedges L, V . Distribution Theory for Glass’s Estimator of Effect Size and Related Estimators Author (s): Larry V. Hedges Published by: American Educational Research Association and American Statistical Association Journal of Educational Statis6tiL Key Words: ME. 2014;6(2):107‐128.
Google Scholar38. Gustin, SM, Peck, CC, Cheney, LB, Macey, PM, Murray, GM, Henderson, LA. Pain and plasticity: Is chronic pain always associated with somatosensory cortex activity and reorganization? J Neurosci. 2012;32(43):14874‐14884.
Google Scholar | Crossref | Medline39. Henderson, LA, Gustin, SM, Macey, PM, Wrigley, PJ, Siddall, PJ. Functional reorganization of the brain in humans following spinal cord injury: Evidence for underlying changes in cortical anatomy. J Neurosci. 2011;31(7):2630‐2637.
Google Scholar | Crossref | Medline40. Hemington, KS, Wu, Q, Kucyi, A, Inman, RD, Davis, KD. Abnormal cross-network functional connectivity in chronic pain and its association with clinical symptoms. Brain Struct Funct. 2016;221(8):4203‐4219.
Google Scholar | Crossref | Medline41. Seeley, WW, Menon, V, Schatzberg, AF, et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349‐2356.
Google Scholar | Crossref | Medline | ISI42. Di, X, Biswal, BB. Dynamic brain functional connectivity modulated by resting-state networks. Brain Struct Funct. 2015;220(1):37‐46.
Google Scholar | Crossref | Medline43. Sridharan, D, Levitin, DJ, Menon, V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Pnas. 2008;105(34):12569‐12574.
Google Scholar | Crossref | Medline | ISI44. Sidlauskaite, J, Wiersema, JR, Roeyers, H, et al. Anticipatory processes in brain state switching—Evidence from a novel cued-switching task implicating default mode and salience networks. Neuroimage. Published online 2014.
Google Scholar | Crossref | Medline45. Marek, S, Dosenbach, NUF. Control networks of the frontal lobes. Front Lobes. 2019;163:333‐347.
Google Scholar | Crossref46. Gogolla, N . The insular cortex. Curr Biol. 2017;27(12):R580‐R586.
Google Scholar | Crossref | Medline47. Heilbronner, SR, Hayden, BY. Dorsal anterior cingulate cortex: A bottom-up view. Annu Rev Neurosci. 2016;39:149‐170.
Google Scholar | Crossref | Medline48. Ettinger- H, V, Södermark, M, Graven-nielsen, T, Sjörs, A, Engström, M, Gerdle, B. Chronic widespread pain patients show disrupted cortical connectivity in default mode and salience networks, modulated by pain sensitivity. J Pain Res. 2019;12:1743‐1755.
Google Scholar | Crossref | Medline49. Yi, W, Qiu, S, Wang, K, et al. Evaluation of EEG oscillatory patterns and cognitive process during simple and compound limb motor imagery. PLoS One. 2014;9(12):1‐19.
Google Scholar | Crossref50. Cole, MW, Pathak, S, Schneider, W. Identifying the brain’s most globally connected regions. Neuroimage. 2010;49(4):3132‐3148.
Google Scholar | Crossref | Medline51. Power, JD, Schlaggar, BL, Lessov-Schlaggar, CNPS. Evidence for hubs in human functional brain networks. Neuron. 2013;79(4):798‐813.
Google Scholar | Crossref | Medline52. Marek, S, Hwang, K, Foran, W, Hallquist, MN, Luna, B. The Contribution of Network Organization and Integration to the Development of Cognitive Control. PLoS Biol.

留言 (0)

沒有登入
gif