Vitamin C supplementation for the treatment of osteoarthritis: perspectives on the past, present, and future

1. Hootman, JM, Helmick, CG. Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 2006; 54: 226–229.
Google Scholar | Crossref | Medline2. Felson, DT, Lawrence, RC, Dieppe, PA, et al. Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000; 133: 635–646.
Google Scholar | Crossref | Medline3. Litwic, A, Edwards, MH, Dennison, EM, et al. Epidemiology and burden of osteoarthritis. Br Med Bull 2013; 105: 185–199.
Google Scholar | Crossref | Medline4. Lawrence, RC, Felson, DT, Helmick, CG, et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum 2008; 58: 26–35.
Google Scholar | Crossref | Medline5. Hawker, GA. Osteoarthritis is a serious disease. Clin Exp Rheumatol 2019; 37: S3–S6.
Google Scholar | Medline6. Creamer, P, Lethbridge-Cejku, M, Hochberg, MC. Factors associated with functional impairment in symptomatic knee osteoarthritis. Rheumatology 2000; 39: 490–496.
Google Scholar | Crossref | Medline7. Palazzo, C, Nguyen, C, Lefevre-Colau, M-M, et al. Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med 2016; 59: 134–138.
Google Scholar | Crossref | Medline8. Buttgereit, F, Burmester, G-R, Bijlsma, JW. Non-surgical management of knee osteoarthritis: where are we now and where do we need to go. RMD Open 2015; 1: e000027.
Google Scholar | Crossref9. Wyles, CC, Houdek, MT, Behfar, A, et al. Mesenchymal stem cell therapy for osteoarthritis: current perspectives. Stem Cells Cloning 2015; 8: 117–124.
Google Scholar | Medline10. Wernecke, C, Braun, HJ, Dragoo, JL. The Effect of intra-articular corticosteroids on articular cartilage: a systematic review. Orthop J Sports Med 2015; 3: 1–7.
Google Scholar | SAGE Journals11. McAlindon, TE, LaValley, MP, Harvey, WF, et al. Effect of intra-articular triamcinolone vs saline on knee cartilage volume and pain in patients with knee osteoarthritis: a randomized clinical trial. JAMA 2017; 317: 1967–1975.
Google Scholar | Crossref | Medline12. Manunta, AF, Zedde, P, Cudoni, S, et al. Early joint degeneration and antagonism between growth factors and reactive oxygen species. Joints 2015; 3: 123–128.
Google Scholar | Crossref | Medline13. Iolascon, G, Gimigliano, R, Bianco, M, et al. Are dietary supplements and nutraceuticals effective for musculoskeletal health and cognitive function? A scoping review. J Nutr Health Aging 2017; 21: 527–538.
Google Scholar | Crossref | Medline14. Mazieres, B, Combe, B, Van, AP, et al. Chondroitin sulfate in osteoarthritis of the knee: a prospective, double blind, placebo controlled multi-center clinical study. J Rheumatol 2001; 28: 173–181.
Google Scholar | Medline15. Bishnoi, M, Jain, A, Hurkat, P, et al. Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J 2016; 33: 693–705.
Google Scholar | Crossref | Medline16. Mantovani, V, Maccari, F, Volpi, N. Chondroitin sulfate and glucosamine as disease modifying anti-osteoarthritis drugs (DMOADs). Curr Med Chem 2016; 23: 1139–1151.
Google Scholar | Crossref | Medline17. McAlindon, TE, Felson, DT, Zhang, Y, et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med 1996; 125: 353–359.
Google Scholar | Crossref | Medline18. Malek Mahdavi, A, Mahdavi, R, Kolahi, S, et al. L-Carnitine supplementation improved clinical status without changing oxidative stress and lipid profile in women with knee osteoarthritis. Nutr Res 2015; 35: 707–715.
Google Scholar19. Yang, KC, Wu, CC, Chen, WY, et al. L-Glutathione enhances antioxidant capacity of hyaluronic acid and modulates expression of pro-inflammatory cytokines in human fibroblast-like synoviocytes. J Biomed Mater Res A 2016; 104: 2071–2079.
Google Scholar | Crossref | Medline20. Grover, AK, Samson, SE. Benefits of antioxidant supplements for knee osteoarthritis: rationale and reality. Nutr J 2015; 15: 1.
Google Scholar | Crossref21. Comblain, F, Dubuc, J-E, Lambert, C, et al. Identification of targets of a new nutritional mixture for osteoarthritis management composed by curcuminoids extract, hydrolyzed collagen and green tea extract. PLoS ONE 2016; 11: e0156902.
Google Scholar | Crossref | Medline22. Felson, DT, Niu, J, Clancy, M, et al. Low levels of vitamin D and worsening of knee osteoarthritis: results of two longitudinal studies. Arthritis Rheum 2007; 56: 129–136.
Google Scholar | Crossref | Medline23. Carpenter, KJ. The history of scurvy and vitamin C. Cambridge: Cambridge University Press, 1988.
Google Scholar24. Levine, M, Rumsey, SC, Daruwala, R, et al. Criteria and recommendations for vitamin C intake. JAMA 1999; 281: 1415–1423.
Google Scholar | Crossref | Medline25. Bigley, RH, Stankova, L. Uptake and reduction of oxidized and reduced ascorbate by human leukocytes. J Exp Med 1974; 139: 1084–1092.
Google Scholar | Crossref | Medline26. Kallner, A, Hornig, D, Pellikka, R. Formation of carbon dioxide from ascorbate in man. Am J Clin Nutr 1985; 41: 609–613.
Google Scholar | Crossref | Medline27. Padayatty, SJ, Levine, M. Vitamin C: the known and the unknown and Goldilocks. Oral Dis 2016; 22: 463–493.
Google Scholar | Crossref | Medline28. Fulzele, S, Chothe, P, Sangani, R, et al. Sodium-dependent vitamin C transporter SVCT2: expression and function in bone marrow stromal cells and in osteogenesis. Stem Cell Res 2013; 10: 36–47.
Google Scholar | Crossref | Medline29. Takamizawa, S, Maehata, Y, Imai, K, et al. Effects of ascorbic acid and ascorbic acid 2-phosphate, a long-acting vitamin C derivative, on the proliferation and differentiation of human osteoblast-like cells. Cell Biol Int 2004; 28: 255–265.
Google Scholar | Crossref | Medline30. Chambial, S, Dwivedi, S, Shukla, KK, et al. Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 2013; 28: 314–328.
Google Scholar | Crossref | Medline31. Tsukaguchi, H, Tokui, T, Mackenzie, B, et al. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature 1999; 399(6731): 70–75.
Google Scholar | Crossref | Medline32. Rajan, DP, Huang, W, Dutta, B, et al. Human placental sodium-dependent vitamin C transporter (SVCT2): molecular cloning and transport function. Biochem Biophys Res Commun 1999; 262: 762–768.
Google Scholar | Crossref | Medline33. Sangani, R, Pandya, CD, Bhattacharyya, MH, et al. Knockdown of SVCT2 impairs in-vitro cell attachment, migration and wound healing in bone marrow stromal cells. Stem Cell Res 2014; 12: 354–363.
Google Scholar | Crossref | Medline34. Chothe, PP, Chutkan, N, Sangani, R, et al. Sodium-coupled vitamin C transporter (SVCT2): expression, function, and regulation in intervertebral disc cells. Spine J 2013; 13: 549–557.
Google Scholar | Crossref | Medline35. McNulty, AL, Vail, TP, Kraus, VB. Chondrocyte transport and concentration of ascorbic acid is mediated by SVCT2. Biochim et Biophys Acta 2005; 1712: 212–221.
Google Scholar | Crossref | Medline36. Blackburn, AR, Hamrick, MW, Chutkan, N, et al. Comparative analysis of sodium coupled vitamin C transporter 2 in human osteoarthritis grade 1 and grade 3 tissues. BMC Musculoskelet Disord 2014; 15: 9.
Google Scholar | Crossref | Medline37. Michels, AJ, Joisher, N, Hagen, TM. Age-related decline of sodium-dependent ascorbic acid transport in isolated rat hepatocytes. Arch Biochem Biophys 2003; 410: 112–120.
Google Scholar | Crossref | Medline38. Seno, T, Inoue, N, Matsui, K, et al. Functional expression of sodium-dependent vitamin C transporter 2 in human endothelial cells. J Vasc Res 2004; 41: 345–351.
Google Scholar | Crossref | Medline39. Bolduc, JA, Collins, JA, Loeser, RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132: 73–82.
Google Scholar | Crossref | Medline40. Peregoy, J, Wilder, FV. The effects of vitamin C supplementation on incident and progressive knee osteoarthritis: a longitudinal study. Public Health Nutr 2011; 14: 709–715.
Google Scholar | Crossref | Medline41. Meacock, S, Bodmer, J, Billingham, M. Experimental osteoarthritis in guinea-pigs. J Exp Pathol 1990; 71: 279.
Google Scholar42. Kurz, B, Jost, B, Schünke, M. Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthritis Cartilage 2002; 10: 119–126.
Google Scholar | Crossref | Medline43. Lindsey, RC, Cheng, S, Mohan, S. Vitamin C effects on 5-hydroxymethylcytosine and gene expression in osteoblasts and chondrocytes: potential involvement of PHD2. PLoS ONE 2019; 14: e0220653.
Google Scholar | Crossref | Medline44. Kraus, VB, Huebner, JL, Stabler, T, et al. Ascorbic acid increases the severity of spontaneous knee osteoarthritis in a guinea pig model. Arthritis Rheum 2004; 50: 1822–1831.
Google Scholar | Crossref | Medline45. Clark, AG, Rohrbaugh, AL, Otterness, I, et al. The effects of ascorbic acid on cartilage metabolism in guinea pig articular cartilage explants. Matrix Biol 2002; 21: 175–184.
Google Scholar | Crossref | Medline46. Chiu, P-R, Hu, Y-C, Huang, T-C, et al. Vitamin C protects chondrocytes against monosodium iodoacetate-induced osteoarthritis by multiple pathways. Int J Mol Sci 2017; 18: 38.
Google Scholar | Crossref47. Yao, H, Xu, J, Wang, J, et al. Combination of magnesium ions and vitamin C alleviates synovitis and osteophyte formation in osteoarthritis of mice. Bioact Mater 2020; 6: 1341–1352.
Google Scholar | Crossref | Medline48. Liao, Z, Xing, Z, Chen, Y, et al. Intra-articular injection of ascorbic acid/ferric chloride relieves cartilage degradation in rats with osteoarthritis. Nan Fang Yi Ke Da Xue Bao 2018; 38: 62–68.
Google Scholar | Medline49. Koike, M, Nojiri, H, Ozawa, Y, et al. Mechanical overloading causes mitochondrial superoxide and SOD2 imbalance in chondrocytes resulting in cartilage degeneration. Sci Rep 2015; 5: 11722.
Google Scholar | Crossref | Medline50. Wang, Y, Hodge, AM, Wluka, AE, et al. Effect of antioxidants on knee cartilage and bone in healthy, middle-aged subjects: a cross-sectional study. Arthritis Res Ther 2007; 9: R66.
Google Scholar | Crossref51. Jeong, Y, Lee Kim, Y, Kim, K, et al. Relationship of sociodemographic and anthropometric characteristics, and nutrient and food intakes with osteoarthritis prevalence in elderly subjects with controlled dyslipidaemia: a cross-sectional study. Asia Pac J Clin Nutr 2019; 28: 837–844.
Google Scholar | Medline52. Joseph, GB, McCulloch, CE, Nevitt, MC, et al. Associations between vitamins C and D intake and cartilage composition and knee joint morphology over 4 years: data from the Osteoarthritis Initiative. Arthritis Care Res 2020; 72: 1239–1247.
Google Scholar | Crossref53. Chaganti, R, Tolstykh, I, Javaid, M, et al. High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthritis Cartilage 2014; 22: 190–196.
Google Scholar

留言 (0)

沒有登入
gif