Innate Immunity and Cell Death in Alzheimer's Disease

Ahlem, C., Auci, D., Mangano, K., Reading, C., Frincke, J., Stickney, D., Nicoletti, F. (2009). HE3286: A novel synthetic steroid as an oral treatment for autoimmune disease. Annals of the New York Academy of Sciences, 1173, 781–790. https://doi.org/10.1111/j.1749-6632.2009.04798.x
Google Scholar | Crossref | Medline | ISI Alonso, A. D., Cohen, L. S., Corbo, C., Morozova, V., Elidrissi, A., Phillips, G., Kleiman, F. E. (2018). Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Frontiers in Cellular Neuroscience, 12, 338. https://doi.org/10.3389/fncel.2018.00338
Google Scholar | Crossref | Medline Anderson, K. M., Olson, K. E., Estes, K. A., Flanagan, K., Gendelman, H. E., Mosley, R. L. (2014). Dual destructive and protective roles of adaptive immunity in neurodegenerative disorders. Translational Neurodegeneration, 3(1), 25. https://doi.org/10.1186/2047-9158-3-25
Google Scholar | Crossref | Medline Arriagada, P. V., Growdon, J. H., Hedley-Whyte, E. T., Hyman, B. T. (1992). Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer’s disease. Neurology, 42(3 Pt 1), 631–639. https://doi.org/10.1212/WNL.42.3.631
Google Scholar | Crossref | Medline | ISI Balducci, C., Frasca, A., Zotti, M., La Vitola, P., Mhillaj, E., Grigoli, E., Iacobellis, M., Grandi, F., Messa, M., Colombo, L., Molteni, M., Trabace, L., Rossetti, C., Salmona, M., Forloni, G. (2017). Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behavior and Immunity, 60, 188–197. https://doi.org/10.1016/j.bbi.2016.10.012
Google Scholar | Crossref | Medline Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. I., Martínez, C. M., Amores-Iniesta, J., Compan, V., Barberà-Cremades, M., Yagüe, J., Ruiz-Ortiz, E., Antón, J., Buján, S., Couillin, I., Brough, D., Arostegui, J. I., Pelegrín, P. (2014). The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nature Immunology, 15(8), 738–748. https://doi.org/10.1038/ni.2919
Google Scholar | Crossref | Medline | ISI Baruch, K., Rosenzweig, N., Kertser, A., Deczkowska, A., Sharif, A. M., Spinrad, A., Tsitsou-Kampeli, A., Sarel, A., Cahalon, L., Schwartz, M. (2015). Breaking immune tolerance by targeting Foxp3(+) regulatory T cells mitigates Alzheimer’s disease pathology. Nature Communications, 6, 7967. https://doi.org/10.1038/ncomms8967
Google Scholar | Crossref | Medline | ISI Bergsbaken, T., Fink, S. L., Cookson, B. T. (2009). Pyroptosis: Host cell death and inflammation. Nature Reviews Microbiology, 7(1), 99–109. https://doi.org/10.1038/nrmicro2070
Google Scholar | Crossref | Medline Blacher, E., Dadali, T., Bespalko, A., Haupenthal, V. J., Grimm, M. O., Hartmann, T., Lund, F. E., Stein, R., Levy, A. (2015). Alzheimer’s disease pathology is attenuated in a CD38-deficient mouse model. Annals of Neurology, 78(1), 88–103. https://doi.org/10.1002/ana.24425
Google Scholar | Crossref | Medline Brazier, D., Perry, R., Keane, J., Barrett, K., Elmaleh, D. R. (2017). Pharmacokinetics of cromolyn and ibuprofen in healthy elderly volunteers. Clinical Drug Investigation, 37, 1025–1034. https://doi.org/10.1007/s40261-017-0549-5
Google Scholar | Crossref | Medline Bsibsi, M., Ravid, R., Gveric, D., Van Noort, J. M. (2002). Broad expression of toll-like receptors in the human central nervous system. Journal of Neuropathology & Experimental Neurology, 61(11), 1013–1021. https://doi.org/10.1093/jnen/61.11.1013
Google Scholar | Crossref | Medline Busche, M. A., Hyman, B. T. (2020). Synergy between amyloid-β and tau in Alzheimer’s disease. Nature Neuroscience, 23(10), 1183–1193. https://doi.org/10.1038/s41593-020-0687-6
Google Scholar | Crossref | Medline Caccamo, A., Branca, C., Piras, I. S., Ferreira, E., Huentelman, M. J., Liang, W. S., Readhead, B., Dudley, J. T., Spangenberg, E. E., Green, K. N., Belfiore, R., Winslow, W., Oddo, S. (2017). Necroptosis activation in Alzheimer’s disease. Nature Neuroscience, 20(9), 1236–1246. https://doi.org/10.1038/nn.4608
Google Scholar | Crossref | Medline Cantrell, D. (2015). Signaling in lymphocyte activation. Cold Spring Harbor Perspectives in Biology, 7(6). https://doi.org/10.1101/cshperspect.a018788
Google Scholar | Crossref | Medline Chasseigneaux, S., Allinquant, B. (2012). Functions of Aβ, sAPPα and sAPPβ : Similarities and differences. Journal of Neurochemistry, 120(Suppl 1), 99–108. https://doi.org/10.1111/j.1471-4159.2011.07584.x
Google Scholar | Crossref | Medline Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
Google Scholar | Crossref | Medline Chen, K., Iribarren, P., Hu, J., Chen, J., Gong, W., Cho, E. H., Lockett, S., Dunlop, N. M., Wang, J. M. (2006). Activation of toll-like receptor 2 on microglia promotes cell uptake of Alzheimer disease-associated amyloid beta peptide. Journal of Biological Chemistry, 281(6), 3651–3659. https://doi.org/10.1074/jbc.M508125200
Google Scholar | Crossref | Medline Christgen, S., Zheng, M., Kesavardhana, S., Karki, R., Malireddi, R. K. S., Banoth, B., Place, D. E., Briard, B., Sharma, B. R., Tuladhar, S., Samir, P., Burton, A., Kanneganti, T. D. (2020). Identification of the PANoptosome: A molecular platform triggering pyroptosis, apoptosis, and necroptosis (PANoptosis). Frontiers in Cellular and Infection Microbiology, 10, 237. https://doi.org/10.3389/fcimb.2020.00237
Google Scholar | Crossref | Medline Clayton, K. A., Van Enoo, A. A., Ikezu, T. (2017). Alzheimer’s disease: The role of microglia in brain homeostasis and proteopathy. Frontiers in Neuroscience, 11, 680. https://doi.org/10.3389/fnins.2017.00680
Google Scholar | Crossref | Medline Congdon, E. E., Sigurdsson, E. M. (2018). Tau-targeting therapies for Alzheimer disease. Nature Reviews. Neurology, 14(7), 399–415. https://doi.org/10.1038/s41582-018-0013-z
Google Scholar | Crossref | Medline Daniels, M. J., Rivers-Auty, J., Schilling, T., Spencer, N. G., Watremez, W., Fasolino, V., Booth, S. J., White, C. S., Baldwin, A. G., Freeman, S., Wong, R., Latta, C., Yu, S., Jackson, J., Fischer, N., Koziel, V., Pillot, T., Bagnall, J., Allan, S. M., … , Brough, D. (2016). Fenamate NSAIDs inhibit the NLRP3 inflammasome and protect against Alzheimer’s disease in rodent models. Nature Communications, 7, 12504. https://doi.org/10.1038/ncomms12504
Google Scholar | Crossref | Medline Dansokho, C., Ait Ahmed, D., Aid, S., Toly-Ndour, C., Chaigneau, T., Calle, V., Cagnard, N., Holzenberger, M., Piaggio, E., Aucouturier, P., Dorothée, G. (2016). Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain, 139(Pt 4), 1237–1251. https://doi.org/10.1093/brain/awv408
Google Scholar | Crossref | Medline Decourt, B., Wilson, J., Ritter, A., Dardis, C., Difilippo, F. P., Zhuang, X., Cordes, D., Lee, G., Fulkerson, N. D., St Rose, T., Hartley, K., Sabbagh, M. N. (2020). MCLENA-1: A phase II clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment Due to Alzheimer’s disease. Open Access Journal of Clinical Trials, 12, 1–13. https://doi.org/10.2147/OAJCT.S221914
Google Scholar | Crossref | Medline De Rivero Vaccari, J. P., Brand, F. J., Sedaghat, C., Mash, D. C., Dietrich, W. D., Keane, R. W. (2014). RIG-1 receptor expression in the pathology of Alzheimer’s disease. Journal of Neuroinflammation, 11, 67. https://doi.org/10.1186/1742-2094-11-67
Google Scholar | Crossref | Medline Dondelinger, Y., Declercq, W., Montessuit, S., Roelandt, R., Goncalves, A., Bruggeman, I., Hulpiau, P., Weber, K., Sehon, C. A., Marquis, R. W., Bertin, J., Gough, P. J., Savvides, S., Martinou, J. C., Bertrand, M. J., Vandenabeele, P. (2014). MLKL Compromises plasma membrane integrity by binding to phosphatidylinositol phosphates. Cell Reports, 7(4), 971–981. https://doi.org/10.1016/j.celrep.2014.04.026
Google Scholar | Crossref | Medline Estus, S., Shaw, B. C., Devanney, N., Katsumata, Y., Press, E. E., Fardo, D. W. (2019). Evaluation of CD33 as a genetic risk factor for Alzheimer’s disease. Acta Neuropathologica, 138(2), 187–199. https://doi.org/10.1007/s00401-019-02000-4
Google Scholar | Crossref | Medline Fiandaca, M. S., Kapogiannis, D., Mapstone, M., Boxer, A., Eitan, E., Schwartz, J. B., Abner, E. L., Petersen, R. C., Federoff, H. J., Miller, B. L., Goetzl, E. J. (2015). Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: A case-control study. Alzheimer’s & Dementia, 11(6), 600–607.e601. https://doi.org/10.1016/j.jalz.2014.06.0086
Google Scholar | Crossref | Medline Forlenza, O. V., Diniz, B. S., Talib, L. L., Mendonça, V. A., Ojopi, E. B., Gattaz, W. F., Teixeira, A. L. (2009). Increased serum IL-1beta level in Alzheimer’s disease and mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 28(6), 507–512. https://doi.org/10.1159/000255051
Google Scholar | Crossref | Medline Forloni, G., Mangiarotti, F., Angeretti, N., Lucca, E., De Simoni, M. G. (1997). Beta-amyloid fragment potentiates IL-6 and TNF-alpha secretion by LPS in astrocytes but not in microglia. Cytokine, 9(10), 759–762. https://doi.org/10.1006/cyto.1997.0232
Google Scholar | Crossref | Medline Franklin, B. S., Bossaller, L., De Nardo, D., Ratter, J. M., Stutz, A., Engels, G., Brenker, C., Nordhoff, M., Mirandola, S. R., Al-Amoudi, A., Mangan, M. S., Zimmer, S., Monks, B. G., Fricke, M., Schmidt, R. E., Espevik, T., Jones, B., Jarnicki, A. G., Hansbro, P. M., … , Latz, E. (2014). The adaptor ASC has extracellular and ‘prionoid’ activities that propagate inflammation. Nature Immunology, 15(8), 727–737. https://doi.org/10.1038/ni.2913
Google Scholar | Crossref | Medline Friker, L. L., Scheiblich, H., Hochheiser, I. V., Brinkschulte, R., Riedel, D., Latz, E., Geyer, M., Heneka, M. T. (2020). β-Amyloid clustering around ASC fibrils boosts its toxicity in microglia. Cell Reports, 30(11), 3743–3754.e3746. https://doi.org/10.1016/j.celrep.2020.02.025
Google Scholar | Crossref | Medline Gervais, F. G., Xu, D., Robertson, G. S., Vaillancourt, J. P., Zhu, Y., Huang, J., Leblanc, A., Smith, D., Rigby, M., Shearman, M. S., Clarke, E. E., Zheng, H., Van Der Ploeg, L. H., Ruffolo, S. C., Thornberry, N. A., Xanthoudakis, S., Zamboni, R. J., Roy, S., Nicholson, D. W. (1999). Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell, 97(3), 395–406. https://doi.org/10.1016/S0092-8674(00)80748-5
Google Scholar | Crossref | Medline Giannakopoulos, P., Herrmann, F. R., Bussière, T., Bouras, C., Kövari, E., Perl, D. P., Morrison, J. H., Gold, G., Hof, P. R. (2003). Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology, 60(9), 1495–1500. https://doi.org/10.1212/01.WNL.0000063311.58879.01
Google Scholar | Crossref | Medline | ISI Go, M., Kou, J., Lim, J. E., Yang, J., Fukuchi, K. I. (2016). Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: Implication of TLR4 signaling in disease progression. Biochemical and Biophysical Research Communications, 479(2), 331–337. https://doi.org/10.1016/j.bbrc.2016.09.073
Google Scholar | Crossref | Medline Guerreiro, S., Privat, A. L., Bressac, L., Toulorge, D. (2020). CD38 In neurodegeneration and neuroinflammation. Cells, 9(2). https://doi.org/10.3390/cells9020471
Google Scholar | Crossref | Medline Gurung, P., Anand, P. K., Malireddi, R. K., Vande Walle, L., Van Opdenbosch, N., Dillon, C. P., Weinlich, R., Green, D. R., Lamkanfi, M., Kanneganti, T. D. (2014). FADD And caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. Journal of Immunology, 192(4), 1835–1846. https://doi.org/10.4049/jimmunol.1302839
Google Scholar | Crossref | Medline Gurung, P., Kanneganti, T. D. (2016). Autoinflammatory skin disorders: The inflammasomme in focus. Trends in Molecular Medicine, 22(7), 545–564. https://doi.org/10.1016/j.molmed.2016.05.003
Google Scholar | Crossref | Medline Haditsch, U., Roth, T., Rodriguez, L., Hancock, S., Cecere, T., Nguyen, M., Arastu-Kapur, S., Broce, S., Raha, D., Lynch, C. C., Holsinger, L. J., Dominy, S. S., Ermini, F. (2020). Alzheimer’s disease-like neurodegeneration in Porphyromonas gingivalis infected neurons with persistent expression of active gingipains. Journal of Alzheimer’s Disease, 75(4), 1361–1376. https://doi.org/10.3233/JAD-200393
Google Scholar | Crossref | Medline Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J., Golenbock, D. T. (2008). The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nature Immunology, 9(8), 857–865. https://doi.org/10.1038/ni.1636
Google Scholar | Crossref |

留言 (0)

沒有登入
gif