A systematic review on descending serotonergic projections and modulation of spinal nociception in chronic neuropathic pain and after spinal cord stimulation

1. Ossipov, MH, Morimura, K, Porreca, F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care 2014; 8: 143–151.
Google Scholar | Crossref | Medline | ISI2. Loeser, JD, Treede, R-D. The Kyoto protocol of IASP basic pain terminology. Pain 2008; 137: 473–477.
Google Scholar | Crossref | Medline | ISI3. Bardin, L. The complex role of serotonin and 5-HT receptors in chronic pain. Behav Pharmacol 2011; 22: 390–404.
Google Scholar | Crossref | Medline | ISI4. Millan, MJ. Descending control of pain. Prog Neurobiol 2002; 66: 355–474.
Google Scholar | Crossref | Medline | ISI5. Benarroch, EE. Dorsal horn circuitry: complexity and implications for mechanisms of neuropathic pain. Neurology 2016; 86: 1060–1069.
Google Scholar | Crossref | Medline6. Todd, AJ. Neuronal circuitry for pain processing in the dorsal horn. Nat Rev Neurosci 2010; 11: 823–836.
Google Scholar | Crossref | Medline | ISI7. Braz, JM, Nassar, MA, Wood, JN, Basbaum, AI. Parallel “pain” pathways arise from subpopulations of primary afferent nociceptor. Neuron 2005; 47: 787–793.
Google Scholar | Crossref | Medline8. Polgár, E, Puskár, Z, Watt, C, Matesz, C, Todd, AJ. Selective innervation of lamina I projection neurones that possess the neurokinin 1 receptor by serotonin-containing axons in the rat spinal cord. Neuroscience 2002; 109: 799–809.
Google Scholar | Crossref | Medline9. Jones, SL, Light, AR. Termination patterns of serotoninergic medullary raphespinal fibers in the rat lumbar spinal cord: an anterograde immunohistochemical study. J Comp Neurol 1990; 297: 267–282.
Google Scholar | Crossref | Medline | ISI10. Laporte, AM, Fattaccini, CM, Lombard, MC, Chauveau, J, Hamon, M. Effects of dorsal rhizotomy and selective lesion of serotonergic and noradrenergic systems on 5-HT1A, 5-HT1B, and 5-HT3 receptors in the rat spinal cord. J Neural Transm Gen Sect 1995; 100: 207–223.
Google Scholar | Crossref | Medline11. Doly, S, Fischer, J, Brisorgueil, MJ, Vergé, D, Conrath, M. 5-HT5A receptor localization in the rat spinal cord suggests a role in nociception and control of pelvic floor musculature. J Comp Neurol 2004; 476: 316–329.
Google Scholar | Crossref | Medline12. Conte, D, Legg, ED, McCourt, AC, Silajdzic, E, Nagy, GG, Maxwell, DJ. Transmitter content, origins and connections of axons in the spinal cord that possess the serotonin (5-hydroxytryptamine) 3 receptor. Neuroscience 2005; 134: 165–173.
Google Scholar | Crossref | Medline13. Liu, FY, Xing, GG, Qu, XX, Xu, IS, Han, JS, Wan, Y. Roles of 5-hydroxytryptamine (5-HT) receptor subtypes in the inhibitory effects of 5-HT on C-fiber responses of spinal wide dynamic range neurons in rats. J Pharmacol Exp Ther 2007; 321: 1046–1053.
Google Scholar | Crossref | Medline14. Maxwell, DJ, Kerr, R, Rashid, S, Anderson, E. Characterisation of axon terminals in the rat dorsal horn that are immunoreactive for serotonin 5-HT3A receptor subunits. Exp Brain Res 2003; 149: 114–124.
Google Scholar | Crossref | Medline15. Brenchat, A, Nadal, X, Romero, L, Ovalle, S, Muro, A, Sánchez-Arroyos, R, Portillo-Salido, E, Pujol, M, Montero, A, Codony, X, Burgueño, J, Zamanillo, D, Hamon, M, Maldonado, R, Vela, JM. Pharmacological activation of 5-HT7 receptors reduces nerve injury-induced mechanical and thermal hypersensitivity. Pain 2010; 149: 483–494.
Google Scholar | Crossref | Medline16. Brenchat, A, Zamanillo, D, Hamon, M, Romero, L, Vela, JM. Role of peripheral versus spinal 5-HT(7) receptors in the modulation of pain undersensitizing conditions. Eur J Pain 2012; 16: 72–81.
Google Scholar | Crossref | Medline17. Doly, S, Madeira, A, Fischer, J, Brisorgueil, MJ, Daval, G, Bernard, R, Vergé, D, Conrath, M. The 5-HT2A receptor is widely distributed in the rat spinal cord and mainly localized at the plasma membrane of postsynaptic neurons. J Comp Neurol 2004; 472: 496–511.
Google Scholar | Crossref | Medline | ISI18. Kawamata, T, Omote, K, Toriyabe, M, Yamamoto, H, Namiki, A. The activation of 5-HT(3) receptors evokes GABA release in the spinal cord. Brain Res 2003; 978: 250–255.
Google Scholar | Crossref | Medline19. Doly, S, Fischer, J, Brisorgueil, MJ, Vergé, D, Conrath, M. Pre- and postsynaptic localization of the 5-HT7 receptor in rat dorsal spinal cord: immunocytochemical evidence. J Comp Neurol 2005; 490: 256–269.
Google Scholar | Crossref | Medline20. Rahman, W, Bannister, K, Bee, LA, Dickenson, AH. A pronociceptive role for the 5-HT2 receptor on spinal nociceptive transmission: an in vivo electrophysiological study in the rat. Brain Res 2011; 1382: 29–36.
Google Scholar | Crossref | Medline21. Kidd, EJ, Laporte, AM, Langlois, X, Fattaccini, CM, Doyen, C, Lombard, MC, Gozlan, H, Hamon, M. 5-HT3 receptors in the rat Central nervous system are mainly located on nerve fibres and terminals. Brain Res 1993; 612: 289–298.
Google Scholar | Crossref | Medline22. Daval, G, Vergé, D, Basbaum, AI, Bourgoin, S, Hamon, M. Autoradiographic evidence of serotonin1 binding sites on primary afferent fibres in the dorsal horn of the rat spinal cord. Neurosci Lett 1987; 83: 71–76.
Google Scholar | Crossref | Medline23. Van Steenwinckel, J, Noghero, A, Thibault, K, Brisorgueil, MJ, Fischer, J, Conrath, M. The 5-HT2A receptor is mainly expressed in nociceptive sensory neurons in rat lumbar dorsal root ganglia. Neuroscience 2009; 161: 838–846.
Google Scholar | Crossref | Medline24. Zeitz, KP, Guy, N, Malmberg, AB, Dirajlal, S, Martin, WJ, Sun, L, Bonhaus, DW, Stucky, CL, Julius, D, Basbaum, AI. The 5-HT3 subtype of serotonin receptor contributes to nociceptive processing via a novel subset of myelinated and unmyelinated nociceptors. J Neurosci 2002; 22: 1010–1019.
Google Scholar | Crossref | Medline25. Melzack, R, Wall, PD. Pain mechanisms: a new theory. Science 1965; 150: 971–979.
Google Scholar | Crossref | Medline | ISI26. Zhuo, M. Descending facilitation: from basic science to the treatment of chronic pain. Mol Pain 2017; 13: 1–12.
Google Scholar | SAGE Journals27. Hooijmans, CR, Rovers, MM, de Vries, RB, Leenaars, M, Ritskes-Hoitinga, M, Langendam, MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43–03.
Google Scholar | Crossref | Medline | ISI28. Hannon, J, Hoyer, D. Molecular biology of 5-HT receptors. Behav Brain Res 2008; 195: 198–213.
Google Scholar | Crossref | Medline | ISI29. Kuraishi, Y, Hirota, N, Satoh, M, Takagi, H. Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests. Brain Res 1985; 326: 168–171.
Google Scholar | Crossref | Medline | ISI30. Advokat, C. Intrathecal coadministration of serotonin and morphine differentially modulates the tail-flick reflex of intact and spinal rats. Pharmacol Biochem Behav 1993; 45: 871–879.
Google Scholar | Crossref | Medline31. Lu, Y, Perl, ER. Selective action of noradrenaline and serotonin on neurones of the spinal superficial dorsal horn in the rat. J Physiol 2007; 582: 127–136.
Google Scholar | Crossref | Medline32. Fasmer, OB, Berge, OG, Hole, K. Changes in nociception after lesions of descending serotonergic pathways induced with 5,6-dihydroxytryptamine. Different effects in the formalin and tail-flick tests. Neuropharmacology 1985; 24: 729–734.
Google Scholar | Crossref | Medline | ISI33. Qu, CL, Huo, FQ, Huang, FS, Li, YQ, Tang, JS, Jia, H. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience 2008; 152: 487–494.
Google Scholar | Crossref | Medline34. Xiao, DQ, Tang, JS, Yuan, B, Jia, H. Inhibitory effects of 5-hydroxytryptamine microinjection into thalamic nucleus submedius on rat tail flick reflex are mediated by 5-HT2 receptors. Neurosci Lett 1999; 260: 85–88.
Google Scholar | Crossref | Medline35. Xiao, DQ, Zhu, JX, Tang, JS, Jia, H. 5-hydroxytryptamine 1A (5-HT1A) but not 5-HT3 receptor is involved in mediating the nucleus submedius 5-HT-evoked antinociception in the rat. Brain Res 2005; 1046: 38–44.
Google Scholar | Crossref | Medline36. Berge, OG. Effects of 5-HT receptor agonists and antagonists on a reflex response to radiant heat in normal and spinally transected rats. Pain 1982; 13: 253–266.
Google Scholar | Crossref | Medline | ISI37. Meller, ST, Lewis, SJ, Ness, TJ, Brody, MJ, Gebhart, GF. Vagal afferent-mediated inhibition of a nociceptive reflex by intravenous serotonin in the rat. I. Characterization. Brain Res 1990; 524: 90–100.
Google Scholar | Crossref | Medline38. Colpaert, FC, Tarayre, JP, Koek, W, Pauwels, PJ, Bardin, L, Xu, XJ, Wiesenfeld-Hallin, Z, Cosi, C, Carilla-Durand, E, Assié, MB, Vacher, B. Large-amplitude 5-HT1A receptor activation: a new mechanism of profound, Central analgesia. Neuropharmacology 2002; 43: 945–958.
Google Scholar | Crossref | Medline39. Lin, Q, Peng, YB, Willis, WD. Antinociception and inhibition from the periaqueductal gray are mediated in part by spinal 5-hydroxytryptamine(1A) receptors. J Pharmacol Exp Ther 1996; 276: 958–967.
Google Scholar | Medline40. Nadeson, R, Goodchild, CS. Antinociceptive role of 5-HT1A receptors in rat spinal cord. Br J Anaesth 2002; 88: 679–684.
Google Scholar | Crossref | Medline | ISI41. Gjerstad, J, Tjølsen, A, Hole, K. The effect of 5-HT1A receptor stimulation on nociceptive dorsal horn neurones in rats. Eur J Pharmacol 1996; 318: 315–321.
Google Scholar | Crossref | Medline | ISI42. Peng, YB, Lin, Q, Willis, WD. The role of 5-HT3 receptors in periaqueductal gray-induced inhibition of nociceptive dorsal horn neurons in rats. J Pharmacol Exp Ther 1996; 276: 116–124.
Google Scholar | Medline | ISI43. You, HJ, Colpaert, FC, Arendt-Nielsen, L. The novel analgesic and high-efficacy 5-HT1A receptor agonist F 13640 inhibits nociceptive responses, wind-up, and after-discharges in spinal neurons and withdrawal reflexes. Exp Neurol 2005; 191: 174–183.
Google Scholar | Crossref | Medline44. Aira, Z, Buesa, I, Salgueiro, M, Bilbao, J, Aguilera, L, Zimmermann, M, Azkue, JJ. Subtype-specific changes in 5-HT receptor-mediated modulation of C fibre-evoked spinal field potentials are triggered by peripheral nerve injury. Neuroscience 2010; 168: 831–841.
Google Scholar | Crossref | Medline45. Gjerstad, J, Tjølsen, A, Hole, K. A dual effect of 5-HT1B receptor stimulation on nociceptive dorsal horn neurones in rats. Eur J Pharmacol 1997; 335: 127–132.
Google Scholar | Crossref | Medline | ISI46. Ali, Z, Wu, G, Kozlov, A, Barasi, S. The actions of 5-HT1 agonists and antagonists on nociceptive processing in the rat spinal cord: results from behavioural and electrophysiological studies. Brain Res 1994; 661: 83–90.
Google Scholar |

留言 (0)

沒有登入
gif