Functional (un-)Coupling: Impairment, Compensation, and Future Progression in Alzheimer's Disease

1. Brancucci, A . Neural correlates of cognitive ability. J Neurosci Res. 2012;90(7):1299-1309. doi:10.1002/jnr.23045
Google Scholar | Crossref | Medline2. Bressler, SL, Kelso, JAS. Cortical coordination dynamics and cognition. Trends Cogn Sci. 2001;5(1):26-36. doi:10.1016/S1364-6613(00)01564-3
Google Scholar | Crossref | Medline3. Bressler, SL . Large-scale cortical networks and cognition. Brain Res Rev. 1995;20(3):288-304. doi:10.1016/0165-0173(94)00016-I
Google Scholar | Crossref | Medline4. Bressler, SL, Menon, V. Large-scale brain networks in cognition: emerging methods and principles. Trends Cogn Sci. 2010;14(6):277-290. doi:10.1016/j.tics.2010.04.004
Google Scholar | Crossref | Medline | ISI5. Babiloni, C, Lizio, R, Marzano, N, et al. Brain neural synchronization and functional coupling in Alzheimer's Disease as revealed by resting state EEG rhythms. Int J Psychophysiol. 2016;103 May 2016:88-102. doi:10.1016/j.ijpsycho.2015.02.008
Google Scholar | Crossref | Medline6. Rossini, PM, Rossi, S, Babiloni, C, Polich, J. Clinical neurophysiology of aging brain: from normal aging to neurodegeneration. Prog Neurobiol. 2007;83(6):375-400. doi:10.1016/j.pneurobio.2007.07.010
Google Scholar | Crossref | Medline7. Bokde, ALW, Ewers, M, Hampel, H. Assessing neuronal networks: understanding Alzheimer’s disease. Prog Neurobiol. 2009;89(2):125-133. doi:10.1016/j.pneurobio.2009.06.004
Google Scholar | Crossref | Medline | ISI8. Adler, G, Brassen, S, Jajcevic, A. EEG Coherence in Alzheimer’s dementia. J Neural Transm. 2003;110(9):1051-1058. doi:10.1007/s00702-003-0024-8
Google Scholar | Crossref | Medline | ISI9. Jelles, B, Scheltens, P, van der Flier, WM, Jonkman, EJ, da Silva, FH, Stam, CJ. Global dynamical analysis of the EEG in Alzheimer’s disease: frequency-specific changes of functional interactions. Clin Neurophysiol. 2008;119(4):837-841. doi:10.1016/j.clinph.2007.12.002
Google Scholar | Crossref | Medline | ISI10. Koenig, T, Prichep, L, Dierks, T, et al. Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2005;26(2):165-171. doi:10.1016/j.neurobiolaging.2004.03.008
Google Scholar | Crossref | Medline | ISI11. Lee, SH, Park, YM, Kim, DW, Im, CH. Global synchronization index as a biological correlate of cognitive decline in Alzheimer’s disease. Neurosci Res. 2010;66(4):333-339. doi:10.1016/j.neures.2009.12.004
Google Scholar | Crossref | Medline12. Park, YM, Che, HJ, Im, CH, Jung, HT, Bae, SM, Lee, SH. Decreased EEG synchronization and its correlation with symptom severity in Alzheimer’s disease. Neurosci Res. 2008;62(2):112-117. doi:10.1016/j.neures.2008.06.009
Google Scholar | Crossref | Medline | ISI13. Stam, CJ, Montez, T, Jones, BF, et al. Disturbed fluctuations of resting state EEG synchronization in Alzheimer’s disease. Clin Neurophysiol. 2005;116(3):708-715. doi:10.1016/j.clinph.2004.09.022
Google Scholar | Crossref | Medline | ISI14. Koelewijn, L, Bompas, A, Tales, A, et al. Alzheimer’s disease disrupts alpha and beta-band resting-state oscillatory network connectivity. Clin Neurophysiol. 2017;128(11):2347-2357. doi:10.1016/j.clinph.2017.04.018
Google Scholar | Crossref | Medline15. Jeong, J . EEG Dynamics in patients with Alzheimer’s disease. Clin Neurophysiol. 2004;115(7):1490-1505. doi:10.1016/j.clinph.2004.01.001
Google Scholar | Crossref | Medline | ISI16. Shaw, JC . An introduction to the coherence function and its use in EEG signal analysis. J Med Eng Rechn. 1981;5(6):279-288.
Google Scholar | Crossref17. Locatelli, T, Cursi, M, Liberati, D, Franceschi, M, Comi, G. EEG Coherence in Alzheimer’s disease. Electroencephalogr Clin Neurophysiol. 1998;106(3):229-237. doi:10.1016/S0013-4694(97)00129-6
Google Scholar | Crossref | Medline18. Bowyer, SM . Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol. 2016;2(1):1. doi:10.1186/s40810-015-0015-7
Google Scholar | Crossref19. Sauseng, P, Klimesch, W, Schabus, M, Doppelmayr, M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory. Int J Psychophysiol. 2005;57(2):97-103. doi:10.1016/J.IJPSYCHO.2005.03.018
Google Scholar | Crossref | Medline20. Weiss, S, Rappelsberger, P. Long-range EEG synchronization during word encoding correlates with successful memory performance. Cogn Brain Res. 2000;9(3):299-312. doi:10.1016/S0926-6410(00)00011-2
Google Scholar | Crossref | Medline21. Babiloni, C, Carducci, F, Vecchio, F, et al. Functional frontoparietal connectivity during short-term memory as revealed by high-resolution EEG coherence analysis. Behav Neurosci. 2004;118(4):687-697. doi:10.1037/0735-7044.118.4.687
Google Scholar | Crossref | Medline | ISI22. Busk, J, Galbraith, GC. Eeg correlates of visual-motor. Electroencephalogr Clin Neurophysiol. 1975;38(4):415-422.
Google Scholar | Crossref | Medline23. Sauseng, P, Klimesch, W, Doppelmayr, M, Hanslmayr, S, Schabus, M, Gruber, WR. Theta coupling in the human electroencephalogram during a working memory task. Neurosci Lett. 2004;354(2):123-126. doi:10.1016/J.NEULET.2003.10.002
Google Scholar | Crossref | Medline24. Basharpoor, S, Heidari, F, Molavi, P. EEG Coherence in theta, alpha, and beta bands in frontal regions and executive functions. Appl Neuropsychol Adult. 2019;28(3):310-317. doi:10.1080/23279095.2019.1632860
Google Scholar | Crossref | Medline25. Wada, Y, Nanbu, Y, Kikuchi, M, Koshino, Y, Hashimoto, T, Yamaguchi, N. Abnormal functional connectivity in Alzheimer’s disease: intrahemispheric EEG coherence during rest and photic stimulation. Eur Arch Psychiatry Clin Neurosci. 1998;248(4):203-208. doi:10.1007/s004060050038
Google Scholar | Crossref | Medline26. Jelic, V, Julin, P, Shigeta, M, et al. Apolipoprotein E ε4 allele decreases functional connectivity in Alzheimer’s disease as measured by EEG coherence. J Neurol Neurosurg Psychiatry. 1997;63(1):59-65. doi:10.1136/jnnp.63.1.59
Google Scholar | Crossref | Medline27. Babiloni, C, Frisoni, G, Vecchio, F, et al. Global functional coupling of resting EEG rhythms is abnormal in mild cognitive impairment and Alzheimer’s disease: a multicenter EEG study. J Psychophysiol. 2009;23(4):224-234. doi:10.1027/0269-8803.23.4.224
Google Scholar | Crossref28. Sankari, Z, Adeli, H, Adeli, A. Intrahemispheric, interhemispheric, and distal EEG coherence in Alzheimer’s disease. Clin Neurophysiol. 2011;122(5):897-906. doi:10.1016/j.clinph.2010.09.008
Google Scholar | Crossref | Medline | ISI29. Dunkin, JJ, Osato, S, Leuchter, AF. Relationships between EEG coherence and neuropsychological tests in dementia. Clin EEG Neurosci. 1995;26(1):47-59. doi:10.1177/155005949502600107
Google Scholar | SAGE Journals30. Chen, J, Liu, C, Peng, C-K, Fuh, J-L, Hou, F, Yang, AC. Topological reorganization of EEG functional network is associated with the severity and cognitive impairment in Alzheimer’s disease. Phys A. 2019;513:588-597. doi:10.1016/J.PHYSA.2018.09.043
Google Scholar | Crossref31. Vecchio, F, Miraglia, F, Quaranta, D, et al. Cortical connectivity and memory performance in cognitive decline: a study via graph theory from EEG data. Neuroscience. 2016;316:143-150. doi:10.1016/J.NEUROSCIENCE.2015.12.036
Google Scholar | Crossref | Medline | ISI32. Comi, GC, Fornara, C, Locatelli, T, et al. EEG Coherence in Alzheimer and multi-infarct dementia. Arch Gerontol Geriatr. 1998;26(Supplement 1):91-98. doi:10.1016/s0167-4943(98)80016-2
Google Scholar | Crossref33. Babiloni, C, Ferri, R, Binetti, G, et al. Fronto-parietal coupling of brain rhythms in mild cognitive impairment: a multicentric EEG study. Brain Res Bull. 2006;69(1):63-73. doi:10.1016/j.brainresbull.2005.10.013
Google Scholar | Crossref | Medline34. Dubovik, S, Bouzerda-Wahlen, A, Nahum, L, Gold, G, Schnider, A, Guggisberg, AG. Adaptive reorganization of cortical networks in Alzheimer’s disease. Clin Neurophysiol. 2013;124(1):35-43. doi:10.1016/j.clinph.2012.05.028
Google Scholar | Crossref | Medline35. Babiloni, C, Ferri, R, Moretti, DV, et al. Abnormal fronto-parietal coupling of brain rhythms in mild Alzheimer’s disease: a multicentric EEG study. Eur J Neurosci. 2004;19(9):2583-2590. doi:10.1111/j.0953-816X.2004.03333.x
Google Scholar | Crossref | Medline36. Dunkin, JJ, Leuchter, AF, Newton, TF, Cook, IA. Reduced EEG coherence in dementia: state or trait marker? Biol Psychiatry. 1994;35(11):870-879. doi:10.1016/0006-3223(94)90023-X
Google Scholar | Crossref | Medline37. Leuchter, AF, Dunkin, JJ, Lufkin, RB, Anzai, Y, Cook, IA, Newton, TF. Effect of white matter disease on functional connections in the aging brain. J Neurol Neurosurg Psychiatry. 1994;57(11):1347-1354. doi:10.1136/jnnp.57.11.1347
Google Scholar | Crossref | Medline38. Leuchter, AF, Newton, TF, Cook, IA, Walter, DO, Rosenberg-Thompson, S, Lachenbruch, PA. Changes in brain functional connectivity in Alzheimer-type and multi-infarct dementia. Brain. 1992;115(5):1543-1561. doi:10.1093/brain/115.5.1543
Google Scholar | Crossref | Medline39. Delbeuck, X, van der Linden, M, Collette, F. Alzheimer’s Disease as a disconnection syndrome? Neuropsychol Rev. 2003;13(2):79-92. doi:10.1023/A:1023832305702
Google Scholar | Crossref | Medline | ISI40. Badhwar, AP, Tam, A, Dansereau, C, Orban, P, Hoffstaedter, F, Bellec, P. Resting-state network dysfunction in Alzheimer’s disease: a systematic review and meta-analysis. Alzheimers Dement. 2017;8:73-85. doi:10.1016/J.DADM.2017.03.007
Google Scholar | Crossref41. Tzimourta, KD, Christou, V, Tzallas, AT, et al. Machine learning algorithms and statistical approaches for Alzheimer’s disease analysis based on resting-state EEG recordings: a systematic review. Int J Neural Syst. 2021;31(5). doi:10.1142/S0129065721300023
Google Scholar | Crossref | Medline42. Krienen, FM, Thomas Yeo, BT, Buckner, RL. Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B. 2014;369(1653). doi:10.1098/rstb.2013.0526
Google Scholar | Crossref | Medline43. Cole, MW, Ito, T, Cocuzza, C, Sanchez-Romero, R. The functional relevance of task-state functional connectivity. J Neurosci. 2021;41(12):2684-2702. doi:10.1523/JNEUROSCI.1713-20.2021
Google Scholar | Crossref | Medline44. Elton, A, Gao, W. Task-positive functional connectivity of the default mode network transcends task domain. J Cogn Neurosci.

留言 (0)

沒有登入
gif