Increased serum PCSK9 in patients with idiopathic pulmonary arterial hypertension: insights from inflammatory cytokines

1. Urban, D, Poss, J, Bohm, M, et al. Targeting the proprotein convertase subtilisin/kexin type 9 for the treatment of dyslipidemia and atherosclerosis. J Am Coll Cardiol 2013; 62: 1401–1408.
Google Scholar | Crossref | Medline | ISI2. Glerup, S, Schulz, R, Laufs, U, et al. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol 2017; 112: 32.
Google Scholar | Crossref | Medline3. Gagnon, A, Ooi, TC, Cousins, M, et al. The anti-adipogenic effect of peripheral blood mononuclear cells is absent with PCSK9 loss-of-function variants. Obesity (Silver Spring) 2016; 24: 2384–2391.
Google Scholar | Crossref | Medline4. Poirier, S, Prat, A, Marcinkiewicz, E, et al. Implication of the proprotein convertase NARC-1/PCSK9 in the development of the nervous system. J Neurochem 2006; 98: 838–850.
Google Scholar | Crossref | Medline5. Qi, Z, Hu, L, Zhang, J, et al. PCSK9 (proprotein convertase subtilisin/kexin 9) enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation 2021; 143: 45–61.
Google Scholar | Crossref | Medline6. Zhang, Y, Zhu, CG, Xu, RX, et al. Relation of circulating PCSK9 concentration to fibrinogen in patients with stable coronary artery disease. J Clin Lipidol 2014; 8: 494–500.
Google Scholar | Crossref | Medline | ISI7. Walley, KR, Thain, KR, Russell, JA, et al. PCSK9 is a critical regulator of the innate immune response and septic shock outcome. Sci Transl Med 2014; 6: 258ra143.
Google Scholar | Crossref | Medline8. Krahel, JA, Baran, A, Kaminski, TW, et al. Methotrexate decreases the level of PCSK9 – a novel indicator of the risk of proatherogenic lipid profile in psoriasis. The preliminary data. J Clin Med 2020; 9: 910.
Google Scholar | Crossref9. Frostegard, J, Ahmed, S, Hafstrom, I, et al. Low levels of PCSK9 are associated with remission in patients with rheumatoid arthritis treated with anti-TNF-alpha: potential underlying mechanisms. Arthritis Res Ther 2021; 23: 32.
Google Scholar | Crossref | Medline10. Tabeta, K, Hosojima, M, Nakajima, M, et al. Increased serum PCSK9, a potential biomarker to screen for periodontitis, and decreased total bilirubin associated with probing depth in a Japanese community survey. J Periodontal Res 2018; 53: 446–456.
Google Scholar | Crossref | Medline11. Lee, GE, Kim, J, Lee, JS, et al. Role of proprotein convertase subtilisin/kexin type 9 in the pathogenesis of graves' orbitopathy in orbital fibroblasts. Front Endocrinol (Lausanne) 2020; 11: 607144.
Google Scholar | Crossref | Medline12. Tang, ZH, Li, TH, Peng, J, et al. PCSK9: a novel inflammation modulator in atherosclerosis? J Cell Physiol 2019; 234: 2345–2355.
Google Scholar | Crossref | Medline13. Li, S, Guo, YL, Xu, RX, et al. Association of plasma PCSK9 levels with white blood cell count and its subsets in patients with stable coronary artery disease. Atherosclerosis 2014; 234: 441–445.
Google Scholar | Crossref | Medline14. Hoogeveen, RM, Opstal, TSJ, Kaiser, Y, et al. PCSK9 antibody alirocumab attenuates arterial wall inflammation without changes in circulating inflammatory markers. JACC Cardiovasc Imaging 2019; 12: 2571–2573.
Google Scholar | Crossref | Medline15. Landlinger, C, Pouwer, MG, Juno, C, et al. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J 2017; 38: 2499–2507.
Google Scholar | Crossref | Medline | ISI16. Hassoun, PM, Mouthon, L, Barbera, JA, et al. Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 2009; 54: S10–S19.
Google Scholar | Crossref | Medline | ISI17. Pullamsetti, SS, Savai, R, Janssen, W, et al. Inflammation, immunological reaction and role of infection in pulmonary hypertension. Clin Microbiol Infect 2011; 17: 7–14.
Google Scholar | Crossref | Medline18. Rabinovitch, M, Guignabert, C, Humbert, M, et al. Inflammation and immunity in the pathogenesis of pulmonary arterial hypertension. Circ Res 2014; 115: 165–175.
Google Scholar | Crossref | Medline | ISI19. Humbert, M, Monti, G, Brenot, F, et al. Increased interleukin-1 and interleukin-6 serum concentrations in severe primary pulmonary hypertension. Am J Respir Crit Care Med 1995; 151: 1628–1631.
Google Scholar | Crossref | Medline | ISI20. Itoh, T, Nagaya, N, Ishibashi-Ueda, H, et al. Increased plasma monocyte chemoattractant protein-1 level in idiopathic pulmonary arterial hypertension. Respirology 2006; 11: 158–163.
Google Scholar | Crossref | Medline | ISI21. Courboulin, A, Tremblay, VL, Barrier, M, et al. Kruppel-like factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respir Res 2011; 12: 128.
Google Scholar | Crossref | Medline22. Cracowski, JL, Chabot, F, Labarere, J, et al. Proinflammatory cytokine levels are linked to death in pulmonary arterial hypertension. Eur Respir J 2014; 43: 915–917.
Google Scholar | Crossref | Medline23. Galie, N, Humbert, M, Vachiery, JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Rev Esp Cardiol (Engl Ed) 2016; 69: 177.
Google Scholar | Crossref | Medline | ISI24. Prins, KW, Archer, SL, Pritzker, M, et al. Interleukin-6 is independently associated with right ventricular function in pulmonary arterial hypertension. J Heart Lung Transplant 2018; 37: 376–384.
Google Scholar | Crossref | Medline25. Soon, E, Holmes, AM, Treacy, CM, et al. Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension. Circulation 2010; 122: 920–927.
Google Scholar | Crossref | Medline | ISI26. Feingold, KR, Moser, AH, Shigenaga, JK, et al. Inflammation stimulates the expression of PCSK9. Biochem Biophys Res Commun 2008; 374: 341–344.
Google Scholar | Crossref | Medline | ISI27. Miyazawa, H, Tabeta, K, Miyauchi, S, et al. Effect of Porphyromonas gingivalis infection on post-transcriptional regulation of the low-density lipoprotein receptor in mice. Lipids Health Dis 2012; 11: 121.
Google Scholar | Crossref | Medline28. Ricci, C, Ruscica, M, Camera, M, et al. PCSK9 induces a pro-inflammatory response in macrophages. Sci Rep 2018; 8: 2267.
Google Scholar | Crossref | Medline29. Guo, Y, Yan, B, Gui, Y, et al. Physiology and role of PCSK9 in vascular disease: potential impact of localized PCSK9 in vascular wall. J Cell Physiol 2021; 236: 2333–2351.
Google Scholar | Crossref | Medline30. Jonas, K, Waligora, M, Magon, W, et al. Prognostic role of traditional cardiovascular risk factors in patients with idiopathic pulmonary arterial hypertension. Arch Med Sci 2019; 15: 1397–1406.
Google Scholar | Crossref | Medline31. Kopec, G, Waligora, M, Tyrka, A, et al. Low-density lipoprotein cholesterol and survival in pulmonary arterial hypertension. Sci Rep 2017; 7: 41650.
Google Scholar | Crossref | Medline32. Mannu, GS, Zaman, MJ, Gupta, A, et al. Evidence of lifestyle modification in the management of hypercholesterolemia. Curr Cardiol Rev 2013; 9: 2–14.
Google Scholar | Medline33. Gombos, T, Forhecz, Z, Pozsonyi, Z, et al. Long-term survival and apolipoprotein A1 level in chronic heart failure: interaction with tumor necrosis factor alpha -308 G/A polymorphism. J Card Fail 2017; 23: 113–120.
Google Scholar | Crossref | Medline34. Choy, E, Sattar, N. Interpreting lipid levels in the context of high-grade inflammatory states with a focus on rheumatoid arthritis: a challenge to conventional cardiovascular risk actions. Ann Rheum Dis 2009; 68: 460–469.
Google Scholar | Crossref | Medline | ISI35. Khovidhunkit, W, Kim, MS, Memon, RA, et al. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004; 45: 1169–1196.
Google Scholar | Crossref | Medline | ISI36. Feingold, KR, Grunfeld, C. The effect of inflammation and infection on lipids and lipoproteins. In: Feingold KR, Anawalt B, Boyce A, et al. (eds) Endotext. South Dartmouth, MA: MDText.com, Inc., 2000. https://www.ncbi.nlm.nih.gov/books/NBK326741/
Google Scholar37. Lador, F, Soccal, PM, Sitbon, O. Biomarkers for the prognosis of pulmonary arterial hypertension: holy grail or flying circus? J Heart Lung Transplant 2014; 33: 341–343.
Google Scholar | Crossref | Medline38. Fijalkowska, A, Kurzyna, M, Torbicki, A, et al. Serum N-terminal brain natriuretic peptide as a prognostic parameter in patients with pulmonary hypertension. Chest 2006; 129: 1313–1321.
Google Scholar | Crossref | Medline | ISI39. Andreassen, AK, Wergeland, R, Simonsen, S, et al. N-terminal pro-B-type natriuretic peptide as an indicator of disease severity in a heterogeneous group of patients with chronic precapillary pulmonary hypertension. Am J Cardiol 2006; 98: 525–529.
Google Scholar | Crossref | Medline | ISI40. Galie, N, Channick, RN, Frantz, RP, et al. Risk stratification and medical therapy of pulmonary arterial hypertension. Eur Respir J 2019; 53: 01889–2018.
Google Scholar | Crossref

留言 (0)

沒有登入
gif