Msx1 haploinsufficiency modifies the Pax9-deficient cardiovascular phenotype

1.

Baldini A, Fulcoli FG, Illingworth E. Tbx1: transcriptional and developmental functions. Curr Top Dev Biol. 2017;122:223–43.

CAS  PubMed  Article  Google Scholar 

2.

Stothard CA, Mazzotta S, Vyas A, Schneider JE, Mohun TJ, Henderson DJ, Phillips HM, Bamforth SD. Pax9 and Gbx2 interact in the pharyngeal endoderm to control cardiovascular development. J Cardiovasc Dev Dis. 2020;7(2):20.

CAS  PubMed Central  Article  PubMed  Google Scholar 

3.

Phillips HM, Stothard CA, Shaikh Qureshi WM, Kousa AI, Briones-Leon JA, Khasawneh RR, O’Loughlin C, Sanders R, Mazzotta S, Dodds R, et al. Pax9 is required for cardiovascular development and interacts with Tbx1 in the pharyngeal endoderm to control 4th pharyngeal arch artery morphogenesis. Development. 2019;146(18):93.

Google Scholar 

4.

Peters H, Neubuser A, Kratochwil K, Balling R. Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 1998;12(17):2735–47.

CAS  PubMed  PubMed Central  Article  Google Scholar 

5.

Kist R, Watson M, Crosier M, Robinson M, Fuchs J, Reichelt J, Peters H. The formation of endoderm-derived taste sensory organs requires a Pax9-dependent expansion of embryonic taste bud progenitor cells. PLoS Genet. 2014;10(10):e1004709.

PubMed  PubMed Central  Article  CAS  Google Scholar 

6.

Neubuser A, Koseki H, Balling R. Characterization and developmental expression of Pax9, a paired-box-containing gene related to Pax1. Dev Biol. 1995;170(2):701–16.

CAS  PubMed  Article  Google Scholar 

7.

Peters H, Wilm B, Sakai N, Imai K, Maas R, Balling R. Pax1 and Pax9 synergistically regulate vertebral column development. Development. 1999;126(23):5399–408.

CAS  PubMed  Article  PubMed Central  Google Scholar 

8.

Dixon MJ, Marazita ML, Beaty TH, Murray JC. Cleft lip and palate: understanding genetic and environmental influences. Nat Rev Genet. 2011;12(3):167–78.

CAS  PubMed  PubMed Central  Article  Google Scholar 

9.

Kasatwar A, Borle R, Bhola N, Rajanikanth K, Prasad GSV, Jadhav A. Prevalence of congenital cardiac anomalies in patients with cleft lip and palate—its implications in surgical management. J Oral Biol Craniofac Res. 2017;8(3):241–4.

PubMed  PubMed Central  Article  Google Scholar 

10.

Turgeon B, Meloche S. Interpreting neonatal lethal phenotypes in mouse mutants: insights into gene function and human diseases. Physiol Rev. 2009;89(1):1–26.

CAS  PubMed  Article  Google Scholar 

11.

Phillips PC. Epistasis—the essential role of gene interactions in the structure and evolution of genetic systems. Nat Rev Genet. 2008;9(11):855–67.

CAS  PubMed  PubMed Central  Article  Google Scholar 

12.

Satokata I, Maas R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet. 1994;6(4):348–56.

CAS  PubMed  Article  Google Scholar 

13.

Ogawa T, Kapadia H, Wang B, D’Souza RN. Studies on Pax9–Msx1 protein interactions. Arch Oral Biol. 2005;50(2):141–5.

CAS  PubMed  Article  Google Scholar 

14.

Nakatomi M, Wang X-P, Key D, Lund JJ, Turbe-Doan A, Kist R, Aw A, Chen Y, Maas RL, Peters H. Genetic interactions between Pax9 and Msx1 regulate lip development and several stages of tooth morphogenesis. Dev Biol. 2010;340(2):438–49.

CAS  PubMed  Article  Google Scholar 

15.

Nakatomi M, Ludwig KU, Knapp M, Kist R, Lisgo S, Ohshima H, Mangold E, Peters H. Msx1 deficiency interacts with hypoxia and induces a morphogenetic regulation during mouse lip development. Development. 2020;147(21):dev189175.

CAS  PubMed  Article  Google Scholar 

16.

Ogawa T, Kapadia H, Feng JQ, Raghow R, Peters H, D’Souza RN. Functional consequences of interactions between Pax9 and Msx1 genes in normal and abnormal tooth development. J Biol Chem. 2006;281(27):18363–9.

CAS  PubMed  Article  Google Scholar 

17.

Goupille O, Saint Cloment C, Lopes M, Montarras D, Robert B. Msx1 and Msx2 are expressed in sub-populations of vascular smooth muscle cells. Dev Dyn. 2008;237(8):2187–94.

CAS  PubMed  Article  Google Scholar 

18.

Papoutsi T, Odelin G, Moore-Morris T, Puceat M, de la Pompa JL, Robert B, Zaffran S. Msx1(cre) (ERT) (2) knock-In allele: a useful tool to target embryonic and adult cardiac valves. Genesis. 2015;53(5):337–45.

CAS  PubMed  Article  Google Scholar 

19.

Chen YH, Ishii M, Sun J, Sucov HM, Maxson RE Jr. Msx1 and Msx2 regulate survival of secondary heart field precursors and post-migratory proliferation of cardiac neural crest in the outflow tract. Dev Biol. 2007;308(2):421–37.

CAS  PubMed  Article  Google Scholar 

20.

Chen YH, Ishii M, Sucov HM, Maxson RE Jr. Msx1 and Msx2 are required for endothelial-mesenchymal transformation of the atrioventricular cushions and patterning of the atrioventricular myocardium. BMC Dev Biol. 2008;8:75.

CAS  PubMed  PubMed Central  Article  Google Scholar 

21.

Cordell HJ, Bentham J, Topf A, Zelenika D, Heath S, Mamasoula C, Cosgrove C, Blue G, Granados-Riveron J, Setchfield K, et al. Genome-wide association study of multiple congenital heart disease phenotypes identifies a susceptibility locus for atrial septal defect at chromosome 4p16. Nat Genet. 2013;45(7):822–4.

CAS  PubMed  PubMed Central  Article  Google Scholar 

22.

Lahm H, Jia M, Dressen M, Wirth F, Puluca N, Gilsbach R, Keavney BD, Cleuziou J, Beck N, Bondareva O, et al. Congenital heart disease risk loci identified by genome-wide association study in European patients. J Clin Invest. 2021;131(2):e141837.

CAS  PubMed Central  Article  PubMed  Google Scholar 

23.

Santen GW, Sun Y, Gijsbers AC, Carre A, Holvoet M, Haeringen A, Lesnik Oberstein SA, Tomoda A, Mabe H, Polak M, et al. Further delineation of the phenotype of chromosome 14q13 deletions: (positional) involvement of FOXG1 appears the main determinant of phenotype severity, with no evidence for a holoprosencephaly locus. J Med Genet. 2012;49(6):366–72.

CAS  PubMed  Article  Google Scholar 

24.

Schuffenhauer S, Leifheit H-J, Lichtner P, Peters H, Murken J, Emmerich P. De novo deletion (14)(q11.2q13) including PAX9: clinical and molecular findings. J Med Genet. 1999;36(3):233–6.

CAS  PubMed  PubMed Central  Google Scholar 

25.

Shapira SK, Anderson KL, Orr-Urtregar A, Craigen WJ, Lupski JR, Shaffer LG. De novo proximal interstitial deletions of 14q: cytogenetic and molecular investigations. Am J Med Genet. 1994;52(1):44–50.

CAS  PubMed  Article  Google Scholar 

26.

Hayashi S, Yagi M, Morisaki I, Inazawa J. Identical deletion at 14q13.3 including PAX9 and NKX2-1 in siblings from mosaicism of unaffected parent. J Hum Genet. 2015;60:203–6.

CAS  PubMed  Article  Google Scholar 

27.

Doetschman T. Influence of genetic background on genetically engineered mouse phenotypes. Methods Mol Biol. 2009;530:423–33.

CAS  PubMed  PubMed Central  Article  Google Scholar 

28.

Johnson AL, Schneider JE, Mohun TJ, Williams T, Bhattacharya S, Henderson DJ, Phillips HM, Bamforth SD. Early embryonic expression of AP-2α is critical for cardiovascular development. J Cardiovasc Dev Dis. 2020;7(3):27.

CAS  PubMed Central  Article  PubMed  Google Scholar 

29.

Bamforth SD, Braganca J, Farthing CR, Schneider JE, Broadbent C, Michell AC, Clarke K, Neubauer S, Norris D, Brown NA, et al. Cited2 controls left-right patterning and heart development through a Nodal-Pitx2c pathway. Nat Genet. 2004;36(11):1189–96.

CAS  PubMed  Article  Google Scholar 

30.

Houzelstein D, Cohen A, Buckingham ME, Robert B. Insertional mutation of the mouse Msx1 homeobox gene by an nlacZ reporter gene. Mech Dev. 1997;65(1–2):123–33.

CAS  PubMed  Article  Google Scholar 

31.

Lallemand Y, Moreau J, Cloment CS, Vives FL, Robert B. Generation and characterization of a tamoxifen inducible Msx1(CreERT2) knock-in allele. Genesis. 2013;51(2):110–9.

CAS  PubMed  Article  Google Scholar 

32.

Yang L, Cai CL, Lin L, Qyang Y, Chung C, Monteiro RM, Mummery CL, Fishman GI, Cogen A, Evans S. Isl1Cre reveals a common Bmp pathway in heart and limb development. Development. 2006;133(8):1575–85.

CAS  PubMed  Article  Google Scholar 

33.

Kist R, Greally E, Peters H. Derivation of a mouse model for conditional inactivation of Pax9. Genesis. 2007;45(7):460–4.

CAS  PubMed  Article  Google Scholar 

34.

Bensoussan-Trigano V, Lallemand Y, Saint Cloment C, Robert B. Msx1 and Msx2 in limb mesenchyme modulate digit number and identity. Dev Dyn. 2011;240(5):1190–202.

CAS  PubMed  Article  Google Scholar 

35.

Engleka KA, Manderfield LJ, Brust RD, Li L, Cohen A, Dymecki SM, Epstein JA. Islet1 derivatives in the heart are of both neural crest and second heart field origin. Circ Res. 2012;110(7):922–6.

CAS  PubMed  PubMed Central  Article  Google Scholar 

36.

Noordzij JP, Ossoff RH. Anatomy and physiology of the larynx. Otolaryngol Clin North Am. 2006;39(1):1–10.

PubMed  Article  Google Scholar 

37.

Minoux M, Antonarakis GS, Kmita M, Duboule D, Rijli FM. Rostral and caudal pharyngeal arches share a common neural crest ground pattern. Development. 2009;136(4):637–45.

留言 (0)

沒有登入
gif