Bagashev, A., Sawaya, B. E. (2013). Roles and functions of HIV-1 Tat protein in the CNS: An overview. Virology Journal, 10, 358.
https://doi.org/10.1186/1743-422X-10-358 Google Scholar |
Crossref |
Medline Bagasra, O., Lavi, E., Bobroski, L., Khalili, K., Pestaner, J. P., Tawadros, R., Pomerantz, R. J. (1996). Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: Identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS, 10(6), 573–585.
https://doi.org/10.1097/00002030-199606000-00002 Google Scholar |
Crossref |
Medline Brack-Werner, R. (1999). Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS, 13(1), 1–22.
https://doi.org/10.1097/00002030-199901140-00003 Google Scholar |
Crossref |
Medline |
ISI Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J., Pasquale, E. B. (2009). Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12524–12529.
https://doi.org/10.1073/pnas.0903328106 Google Scholar |
Crossref |
Medline Choi, D. W., Maulucci-Gedde, M., Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. Journal of Neuroscience, 7(2), 357–368. https://doi.org/10.1523/JNEUROSCI.07-02-00357.1987
Google Scholar |
Crossref |
Medline Cisneros, I. E., Ghorpade, A. (2014). Methamphetamine and HIV-1-induced neurotoxicity: Role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology, 85, 499–507.
https://doi.org/10.1016/j.neuropharm.2014.06.011 Google Scholar |
Crossref |
Medline Conover, J. C., Doetsch, F., Garcia-Verdugo, J. M., Gale, N. W., Yancopoulos, G. D., Alvarez-Buylla, A. (2000). Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neuroscience, 3(11), 1091–1097.
https://doi.org/10.1038/80606 Google Scholar |
Crossref |
Medline Egea, J., Klein, R. (2007). Bidirectional Eph-ephrin signaling during axon guidance. Trends in Cell Biology, 17(5), 230–238.
https://doi.org/10.1016/j.tcb.2007.03.004 Google Scholar |
Crossref |
Medline Everall, I. P., Luthert, P. J., Lantos, P. L. (1991). Neuronal loss in the frontal cortex in HIV infection. Lancet, 337(8750), 1119–1121.
https://doi.org/10.1016/0140-6736(91)92786-2 Google Scholar |
Crossref |
Medline Fatima, M., Kumari, R., Schwamborn, J. C., Mahadevan, A., Shankar, S. K., Raja, R., Seth, P. (2016). Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death & Differentiation, 23(5), 776–786.
https://doi.org/10.1038/cdd.2015.138 Google Scholar |
Crossref |
Medline Fatima, M., Prajapati, B., Saleem, K., Kumari, R., Mohindar Singh Singal, C., Seth, P. (2017). Novel insights into role of miR-320a-VDAC1 axis in astrocyte-mediated neuronal damage in neuroAIDS. Glia, 65(2), 250–263.
https://doi.org/10.1002/glia.23089 Google Scholar |
Crossref |
Medline Filosa, A., Paixao, S., Honsek, S. D., Carmona, M. A., Becker, L., Feddersen, B., Gaitanos, L., Rudhard, Y., Schoepfer, R., Klopstock, T., Kullander, K., Rose, C. R., Pasquale, E. B., Klein, R. (2009). Neuron–glia communication via ephA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience, 12(10), 1285–1292.
https://doi.org/10.1038/nn.2394 Google Scholar |
Crossref |
Medline Flanagan, J. G., Vanderhaeghen, P. (1998). The ephrins and Eph receptors in neural development. Annual Review of Neuroscience, 21, 309–345.
https://doi.org/10.1146/annurev.neuro.21.1.309 Google Scholar |
Crossref |
Medline |
ISI Gegelashvili, G., Schousboe, A. (1998). Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Research Bulletin, 45(3), 233–238.
https://doi.org/10.1016/s0361-9230(97)00417-6 Google Scholar |
Crossref |
Medline Genander, M., Frisen, J. (2010). Ephrins and Eph receptors in stem cells and cancer. Current Opinion in Cell Biology, 22(5), 611–616.
https://doi.org/10.1016/j.ceb.2010.08.005 Google Scholar |
Crossref |
Medline Gorska, A. M., Eugenin, E. A. (2020). The glutamate system as a crucial regulator of CNS toxicity and survival of HIV reservoirs. Frontiers in Cellular and Infection Microbiology, 10, 261.
https://doi.org/10.3389/fcimb.2020.00261 Google Scholar |
Crossref |
Medline Haughey, N. J., Nath, A., Mattson, M. P., Slevin, J. T., Geiger, J. D. (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. Journal of Neurochemistry, 78(3), 457–467.
https://doi.org/10.1046/j.1471-4159.2001.00396.x Google Scholar |
Crossref |
Medline Hindeya Gebreyesus, H., Gebrehiwot Gebremichael, T. (2020). The potential role of astrocytes in Parkinson's disease (PD). Medical Sciences (Basel), 8(1), 7.
https://doi.org/10.3390/medsci8010007 Google Scholar |
Medline Hruska, M., Dalva, M. B. (2012). Ephrin regulation of synapse formation, function and plasticity. Molecular and Cellular Neuroscience, 50(1), 35–44.
https://doi.org/10.1016/j.mcn.2012.03.004 Google Scholar |
Crossref |
Medline Jimenez, E., Nunez, E., Ibanez, I., Draffin, J. E., Zafra, F., Gimenez, C. (2014). Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3beta. Neurochemistry International, 79, 33–43.
https://doi.org/10.1016/j.neuint.2014.10.003 Google Scholar |
Crossref |
Medline King, J. E., Eugenin, E. A., Buckner, C. M., Berman, J. W. (2006). HIV Tat and neurotoxicity. Microbes and Infection, 8(5), 1347–1357.
https://doi.org/10.1016/j.micinf.2005.11.014 Google Scholar |
Crossref |
Medline Kruman, I. I., Nath, A., Mattson, M. P. (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Experimental Neurology, 154(2), 276–288.
https://doi.org/10.1006/exnr.1998.6958 Google Scholar |
Crossref |
Medline Lipton, S. A. (1994). Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Developmental Neuroscience, 16(3-4), 145–151.
https://doi.org/10.1159/000112101 Google Scholar |
Crossref |
Medline Liu, Y., Jones, M., Hingtgen, C. M., Bu, G., Laribee, N., Tanzi, R. E., Moir, R. D., Nath, A., He, J. J. (2000). Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nature Medicine, 6(12), 1380–1387.
https://doi.org/10.1038/82199 Google Scholar |
Crossref |
Medline Mahmoud, S., Gharagozloo, M., Simard, C., Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 8(2).
https://doi.org/10.3390/cells8020184 Google Scholar |
Crossref Malarkey, E. B., Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochemistry International, 52(1-2), 142–154.
https://doi.org/10.1016/j.neuint.2007.06.005 Google Scholar |
Crossref |
Medline |
ISI Malik, S., Khalique, H., Buch, S., Seth, P. (2011). A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: Implication in HIV/AIDS-drug abuse cases. PLoS One, 6(3), e18116.
https://doi.org/10.1371/journal.pone.0018116 Google Scholar |
Crossref |
Medline Marino, J., Maubert, M. E., Mele, A. R., Spector, C., Wigdahl, B., Nonnemacher, M. R. (2020a). Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cellular and Molecular Life Sciences, 77(24), 5079–5099.
https://doi.org/10.1007/s00018-020-03561-4 Google Scholar |
Crossref |
Medline Marino, J., Wigdahl, B., Nonnemacher, M. R. (2020b). Extracellular HIV-1 Tat mediates increased glutamate in the CNS leading to onset of senescence and progression of HAND. Frontiers in Aging Neuroscience, 12, 168.
https://doi.org/10.3389/fnagi.2020.00168 Google Scholar |
Crossref |
Medline McArthur, J. C., Steiner, J., Sacktor, N., Nath, A. (2010). Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Annals of Neurology, 67(6), 699–714.
https://doi.org/10.1002/ana.22053 Google Scholar |
Medline Murai, K. K., Pasquale, E. B. (2002). Can Eph receptors stimulate the mind? Neuron, 33(2), 159–162.
https://doi.org/10.1016/s0896-6273(02)00565-2 Google Scholar |
Crossref |
Medline Nolt, M. J., Lin, Y., Hruska, M., Murphy, J., Sheffler-Colins, S. I., Kayser, M. S., Passer, J., Bennett, M. V., Zukin, R. S., Dalva, M. B. (2011). Ephb controls NMDA receptor function and synaptic targeting in a subunit-specific manner. Journal of Neuroscience, 31(14), 5353–5364.
https://doi.org/10.1523/JNEUROSCI.0282-11.2011 Google Scholar |
Crossref |
Medline Pandey, H. S., Seth, P. (2019). Friends turn Foe-astrocytes contribute to neuronal damage in NeuroAIDS. Journal of Molecular Neuroscience, 69(2), 286–297.
https://doi.org/10.1007/s12031-019-01357-1 Google Scholar |
Crossref |
Medline Sacktor, N., Skolasky, R. L., Seaberg, E., Munro, C., Becker, J. T., Martin, E., Ragin, A., Levine, A., Miller, E. (2016). Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology, 86(4), 334–340.
https://doi.org/10.1212/WNL.0000000000002277 Google Scholar |
Crossref |
Medline Sheldon, A. L., Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6–7), 333–355.
https://doi.org/10.1016/j.neuint.2007.03.012 Google Scholar |
Crossref |
Medline Spector, C., Mele, A. R., Wigdahl, B., Nonnemacher, M. R. (2019). Genetic variation and function of the HIV-1 Tat protein. Medical Microbiology and Immunology, 208(2), 131–169.
https://doi.org/10.1007/s00430-019-00583-z Google Scholar |
Crossref |
Medline Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E., Hammer, S. M. (2008). The challenge of HIV-1 subtype diversity. New England Journal of Medicine, 358(15), 1590–1602.
https://doi.org/10.1056/NEJMra0706737 Google Scholar |
Crossref |
Medline |
ISI Tewari, M., Monika, Varghse, R. K., Menon, M., Seth, P. (2015). Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R. Journal of Neurochemistry, 132(4), 464–476.
https://doi.org/10.1111/jnc.12953 Google Scholar |
Crossref |
Medline Tewari, M., Seth, P. (2015). Emerging role of P2X7 receptors in CNS health and disease. Ageing Research Reviews, 24(Pt B), 328–342.
https://doi.org/10.1016/j.arr.2015.10.001 Google Scholar |
Crossref |
Medline Thompson, S. M. (2003). Ephrins keep dendritic spines in shape. Nature Neuroscience, 6(2), 103–104.
https://doi.org/10.1038/nn0203-103 Google Scholar |
Crossref |
Medline Thundyil, J., Manzanero, S., Pavlovski, D., Cully, T. R., Lok, K. Z., Widiapradja, A., Chunduri, P., Jo, D. G., Naruse, C., Asano, M., Launikonis, B. S., Sobey, C. G., Coulthard, M. G., Arumugam, T. V. (2013). Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One, 8(1), e53528.
https://doi.org/10.1371/journal.pone.0053528 Google Scholar |
Crossref |
Medline Tuzi, N. L., Gullick, W. J. (1994). Eph, the largest known family of putative growth factor receptors. British Journal of Cancer, 69(3), 417–421.
https://doi.org/10.1038/bjc.1994.77 Google Scholar |
Crossref |
Medline Van Hoecke, A., Schoonaert, L., Lemmens, R., Timmers, M., Staats, K. A., Laird, A. S., Peeters, E., Philips, T., Goris, A., Dubois, B., Andersen, P. M., Al-Chalabi, A., Thijs, V., Turnley, A. M., van Vught, P. W., Veldink, J. H., Hardiman, O., Van Den Bosch, L., Gonzalez-Perez, P., Robberecht, W. (2012). EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 18(9), 1418–1422.
https://doi.org/10.1038/nm.2901 Google Scholar |
Crossref |
Medline Wang, T., Chen, J., Tang, C. X., Zhou, X. Y., Gao, D. S. (2016). Inverse expression levels of EphrinA3 and EphrinA5 contribute to dopaminergic differentiation of human SH-SY5Y cells. Journal of Molecular Neuroscience, 59(4), 483–492.
https://doi.org/10.1007/s12031-016-0759-y
留言 (0)