Role of EphrinA3 in HIV-1 Neuropathogenesis

Bagashev, A., Sawaya, B. E. (2013). Roles and functions of HIV-1 Tat protein in the CNS: An overview. Virology Journal, 10, 358. https://doi.org/10.1186/1743-422X-10-358
Google Scholar | Crossref | Medline Bagasra, O., Lavi, E., Bobroski, L., Khalili, K., Pestaner, J. P., Tawadros, R., Pomerantz, R. J. (1996). Cellular reservoirs of HIV-1 in the central nervous system of infected individuals: Identification by the combination of in situ polymerase chain reaction and immunohistochemistry. AIDS, 10(6), 573–585. https://doi.org/10.1097/00002030-199606000-00002
Google Scholar | Crossref | Medline Brack-Werner, R. (1999). Astrocytes: HIV cellular reservoirs and important participants in neuropathogenesis. AIDS, 13(1), 1–22. https://doi.org/10.1097/00002030-199901140-00003
Google Scholar | Crossref | Medline | ISI Carmona, M. A., Murai, K. K., Wang, L., Roberts, A. J., Pasquale, E. B. (2009). Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proceedings of the National Academy of Sciences of the United States of America, 106(30), 12524–12529. https://doi.org/10.1073/pnas.0903328106
Google Scholar | Crossref | Medline Choi, D. W., Maulucci-Gedde, M., Kriegstein, A. R. (1987). Glutamate neurotoxicity in cortical cell culture. Journal of Neuroscience, 7(2), 357–368. https://doi.org/10.1523/JNEUROSCI.07-02-00357.1987
Google Scholar | Crossref | Medline Cisneros, I. E., Ghorpade, A. (2014). Methamphetamine and HIV-1-induced neurotoxicity: Role of trace amine associated receptor 1 cAMP signaling in astrocytes. Neuropharmacology, 85, 499–507. https://doi.org/10.1016/j.neuropharm.2014.06.011
Google Scholar | Crossref | Medline Conover, J. C., Doetsch, F., Garcia-Verdugo, J. M., Gale, N. W., Yancopoulos, G. D., Alvarez-Buylla, A. (2000). Disruption of Eph/ephrin signaling affects migration and proliferation in the adult subventricular zone. Nature Neuroscience, 3(11), 1091–1097. https://doi.org/10.1038/80606
Google Scholar | Crossref | Medline Egea, J., Klein, R. (2007). Bidirectional Eph-ephrin signaling during axon guidance. Trends in Cell Biology, 17(5), 230–238. https://doi.org/10.1016/j.tcb.2007.03.004
Google Scholar | Crossref | Medline Everall, I. P., Luthert, P. J., Lantos, P. L. (1991). Neuronal loss in the frontal cortex in HIV infection. Lancet, 337(8750), 1119–1121. https://doi.org/10.1016/0140-6736(91)92786-2
Google Scholar | Crossref | Medline Fatima, M., Kumari, R., Schwamborn, J. C., Mahadevan, A., Shankar, S. K., Raja, R., Seth, P. (2016). Tripartite containing motif 32 modulates proliferation of human neural precursor cells in HIV-1 neurodegeneration. Cell Death & Differentiation, 23(5), 776–786. https://doi.org/10.1038/cdd.2015.138
Google Scholar | Crossref | Medline Fatima, M., Prajapati, B., Saleem, K., Kumari, R., Mohindar Singh Singal, C., Seth, P. (2017). Novel insights into role of miR-320a-VDAC1 axis in astrocyte-mediated neuronal damage in neuroAIDS. Glia, 65(2), 250–263. https://doi.org/10.1002/glia.23089
Google Scholar | Crossref | Medline Filosa, A., Paixao, S., Honsek, S. D., Carmona, M. A., Becker, L., Feddersen, B., Gaitanos, L., Rudhard, Y., Schoepfer, R., Klopstock, T., Kullander, K., Rose, C. R., Pasquale, E. B., Klein, R. (2009). Neuron–glia communication via ephA4/ephrin-A3 modulates LTP through glial glutamate transport. Nature Neuroscience, 12(10), 1285–1292. https://doi.org/10.1038/nn.2394
Google Scholar | Crossref | Medline Flanagan, J. G., Vanderhaeghen, P. (1998). The ephrins and Eph receptors in neural development. Annual Review of Neuroscience, 21, 309–345. https://doi.org/10.1146/annurev.neuro.21.1.309
Google Scholar | Crossref | Medline | ISI Gegelashvili, G., Schousboe, A. (1998). Cellular distribution and kinetic properties of high-affinity glutamate transporters. Brain Research Bulletin, 45(3), 233–238. https://doi.org/10.1016/s0361-9230(97)00417-6
Google Scholar | Crossref | Medline Genander, M., Frisen, J. (2010). Ephrins and Eph receptors in stem cells and cancer. Current Opinion in Cell Biology, 22(5), 611–616. https://doi.org/10.1016/j.ceb.2010.08.005
Google Scholar | Crossref | Medline Gorska, A. M., Eugenin, E. A. (2020). The glutamate system as a crucial regulator of CNS toxicity and survival of HIV reservoirs. Frontiers in Cellular and Infection Microbiology, 10, 261. https://doi.org/10.3389/fcimb.2020.00261
Google Scholar | Crossref | Medline Haughey, N. J., Nath, A., Mattson, M. P., Slevin, J. T., Geiger, J. D. (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. Journal of Neurochemistry, 78(3), 457–467. https://doi.org/10.1046/j.1471-4159.2001.00396.x
Google Scholar | Crossref | Medline Hindeya Gebreyesus, H., Gebrehiwot Gebremichael, T. (2020). The potential role of astrocytes in Parkinson's disease (PD). Medical Sciences (Basel), 8(1), 7. https://doi.org/10.3390/medsci8010007
Google Scholar | Medline Hruska, M., Dalva, M. B. (2012). Ephrin regulation of synapse formation, function and plasticity. Molecular and Cellular Neuroscience, 50(1), 35–44. https://doi.org/10.1016/j.mcn.2012.03.004
Google Scholar | Crossref | Medline Jimenez, E., Nunez, E., Ibanez, I., Draffin, J. E., Zafra, F., Gimenez, C. (2014). Differential regulation of the glutamate transporters GLT-1 and GLAST by GSK3beta. Neurochemistry International, 79, 33–43. https://doi.org/10.1016/j.neuint.2014.10.003
Google Scholar | Crossref | Medline King, J. E., Eugenin, E. A., Buckner, C. M., Berman, J. W. (2006). HIV Tat and neurotoxicity. Microbes and Infection, 8(5), 1347–1357. https://doi.org/10.1016/j.micinf.2005.11.014
Google Scholar | Crossref | Medline Kruman, I. I., Nath, A., Mattson, M. P. (1998). HIV-1 protein Tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Experimental Neurology, 154(2), 276–288. https://doi.org/10.1006/exnr.1998.6958
Google Scholar | Crossref | Medline Lipton, S. A. (1994). Neuronal injury associated with HIV-1 and potential treatment with calcium-channel and NMDA antagonists. Developmental Neuroscience, 16(3-4), 145–151. https://doi.org/10.1159/000112101
Google Scholar | Crossref | Medline Liu, Y., Jones, M., Hingtgen, C. M., Bu, G., Laribee, N., Tanzi, R. E., Moir, R. D., Nath, A., He, J. J. (2000). Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nature Medicine, 6(12), 1380–1387. https://doi.org/10.1038/82199
Google Scholar | Crossref | Medline Mahmoud, S., Gharagozloo, M., Simard, C., Gris, D. (2019). Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells, 8(2). https://doi.org/10.3390/cells8020184
Google Scholar | Crossref Malarkey, E. B., Parpura, V. (2008). Mechanisms of glutamate release from astrocytes. Neurochemistry International, 52(1-2), 142–154. https://doi.org/10.1016/j.neuint.2007.06.005
Google Scholar | Crossref | Medline | ISI Malik, S., Khalique, H., Buch, S., Seth, P. (2011). A growth factor attenuates HIV-1 Tat and morphine induced damage to human neurons: Implication in HIV/AIDS-drug abuse cases. PLoS One, 6(3), e18116. https://doi.org/10.1371/journal.pone.0018116
Google Scholar | Crossref | Medline Marino, J., Maubert, M. E., Mele, A. R., Spector, C., Wigdahl, B., Nonnemacher, M. R. (2020a). Functional impact of HIV-1 Tat on cells of the CNS and its role in HAND. Cellular and Molecular Life Sciences, 77(24), 5079–5099. https://doi.org/10.1007/s00018-020-03561-4
Google Scholar | Crossref | Medline Marino, J., Wigdahl, B., Nonnemacher, M. R. (2020b). Extracellular HIV-1 Tat mediates increased glutamate in the CNS leading to onset of senescence and progression of HAND. Frontiers in Aging Neuroscience, 12, 168. https://doi.org/10.3389/fnagi.2020.00168
Google Scholar | Crossref | Medline McArthur, J. C., Steiner, J., Sacktor, N., Nath, A. (2010). Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Annals of Neurology, 67(6), 699–714. https://doi.org/10.1002/ana.22053
Google Scholar | Medline Murai, K. K., Pasquale, E. B. (2002). Can Eph receptors stimulate the mind? Neuron, 33(2), 159–162. https://doi.org/10.1016/s0896-6273(02)00565-2
Google Scholar | Crossref | Medline Nolt, M. J., Lin, Y., Hruska, M., Murphy, J., Sheffler-Colins, S. I., Kayser, M. S., Passer, J., Bennett, M. V., Zukin, R. S., Dalva, M. B. (2011). Ephb controls NMDA receptor function and synaptic targeting in a subunit-specific manner. Journal of Neuroscience, 31(14), 5353–5364. https://doi.org/10.1523/JNEUROSCI.0282-11.2011
Google Scholar | Crossref | Medline Pandey, H. S., Seth, P. (2019). Friends turn Foe-astrocytes contribute to neuronal damage in NeuroAIDS. Journal of Molecular Neuroscience, 69(2), 286–297. https://doi.org/10.1007/s12031-019-01357-1
Google Scholar | Crossref | Medline Sacktor, N., Skolasky, R. L., Seaberg, E., Munro, C., Becker, J. T., Martin, E., Ragin, A., Levine, A., Miller, E. (2016). Prevalence of HIV-associated neurocognitive disorders in the multicenter AIDS cohort study. Neurology, 86(4), 334–340. https://doi.org/10.1212/WNL.0000000000002277
Google Scholar | Crossref | Medline Sheldon, A. L., Robinson, M. B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6–7), 333–355. https://doi.org/10.1016/j.neuint.2007.03.012
Google Scholar | Crossref | Medline Spector, C., Mele, A. R., Wigdahl, B., Nonnemacher, M. R. (2019). Genetic variation and function of the HIV-1 Tat protein. Medical Microbiology and Immunology, 208(2), 131–169. https://doi.org/10.1007/s00430-019-00583-z
Google Scholar | Crossref | Medline Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E., Hammer, S. M. (2008). The challenge of HIV-1 subtype diversity. New England Journal of Medicine, 358(15), 1590–1602. https://doi.org/10.1056/NEJMra0706737
Google Scholar | Crossref | Medline | ISI Tewari, M., Monika, Varghse, R. K., Menon, M., Seth, P. (2015). Astrocytes mediate HIV-1 Tat-induced neuronal damage via ligand-gated ion channel P2X7R. Journal of Neurochemistry, 132(4), 464–476. https://doi.org/10.1111/jnc.12953
Google Scholar | Crossref | Medline Tewari, M., Seth, P. (2015). Emerging role of P2X7 receptors in CNS health and disease. Ageing Research Reviews, 24(Pt B), 328–342. https://doi.org/10.1016/j.arr.2015.10.001
Google Scholar | Crossref | Medline Thompson, S. M. (2003). Ephrins keep dendritic spines in shape. Nature Neuroscience, 6(2), 103–104. https://doi.org/10.1038/nn0203-103
Google Scholar | Crossref | Medline Thundyil, J., Manzanero, S., Pavlovski, D., Cully, T. R., Lok, K. Z., Widiapradja, A., Chunduri, P., Jo, D. G., Naruse, C., Asano, M., Launikonis, B. S., Sobey, C. G., Coulthard, M. G., Arumugam, T. V. (2013). Evidence that the EphA2 receptor exacerbates ischemic brain injury. PLoS One, 8(1), e53528. https://doi.org/10.1371/journal.pone.0053528
Google Scholar | Crossref | Medline Tuzi, N. L., Gullick, W. J. (1994). Eph, the largest known family of putative growth factor receptors. British Journal of Cancer, 69(3), 417–421. https://doi.org/10.1038/bjc.1994.77
Google Scholar | Crossref | Medline Van Hoecke, A., Schoonaert, L., Lemmens, R., Timmers, M., Staats, K. A., Laird, A. S., Peeters, E., Philips, T., Goris, A., Dubois, B., Andersen, P. M., Al-Chalabi, A., Thijs, V., Turnley, A. M., van Vught, P. W., Veldink, J. H., Hardiman, O., Van Den Bosch, L., Gonzalez-Perez, P., Robberecht, W. (2012). EPHA4 is a disease modifier of amyotrophic lateral sclerosis in animal models and in humans. Nature Medicine, 18(9), 1418–1422. https://doi.org/10.1038/nm.2901
Google Scholar | Crossref | Medline Wang, T., Chen, J., Tang, C. X., Zhou, X. Y., Gao, D. S. (2016). Inverse expression levels of EphrinA3 and EphrinA5 contribute to dopaminergic differentiation of human SH-SY5Y cells. Journal of Molecular Neuroscience, 59(4), 483–492. https://doi.org/10.1007/s12031-016-0759-y

留言 (0)

沒有登入
gif