Identification of miRNAs That Mediate Protective Functions of Anti-Cancer Drugs During White Matter Ischemic Injury

Alvarez, M. L., Khosroheidari, M., Eddy, E., Done, S. C. (2015). MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis. Atherosclerosis, 242(2), 595–604. https://doi.org/10.1016/j.atherosclerosis.2015.08.023
Google Scholar | Crossref | Medline | ISI Back, S. A. (2017). White matter injury in the preterm infant: Pathology and mechanisms. Acta Neuropathologica, 134(3), 331–349. https://doi.org/10.1007/s00401-017-1718-6
Google Scholar | Crossref | Medline Baltan, S. (2012). Histone deacetylase inhibitors preserve function in aging axons. Journal of Neurochemistry, 123(Suppl 2), 108–115. https://doi.org/10.1111/j.1471-4159.2012.07949.x
Google Scholar | Crossref | Medline Baltan, S. (2015). Can lactate serve as an energy substrate for axons in good times and in bad, in sickness and in health? Metabolic Brain Disease, 30(1), 25–30. https://doi.org/10.1007/s11011-014-9595-3
Google Scholar | Crossref | Medline Baltan, S. (2016). Age-specific localization of NMDA receptors on oligodendrocytes dictates axon function recovery after ischemia. Neuropharmacology, 110(Pt B), 626–632. https://doi.org/10.1016/j.neuropharm.2015.09.015
Google Scholar | Crossref | Medline Baltan, S. (2019). Stroke in CNS white matter: Models and mechanisms 2019. Neuroscience Letters, 711, 134411. https://doi.org/10.1016/j.neulet.2019.134411
Google Scholar | Crossref | Medline Baltan, S., Bastian, C., Quinn, J., Aquila, D., McCray, A., Brunet, S. (2018). CK2 Inhibition protects white matter from ischemic injury. Neuroscience Letters, 687, 37–42. https://doi.org/10.1016/j.neulet.2018.08.021
Google Scholar | Crossref | Medline Baltan, S., Besancon, E. F., Mbow, B., Ye, Z., Hamner, M. A., Ransom, B. R. (2008). White matter vulnerability to ischemic injury increases with age because of enhanced excitotoxicity. Journal of Neuroscience, 28(6), 1479–1489. https://doi.org/10.1523/JNEUROSCI.5137-07.2008
Google Scholar | Crossref | Medline Baltan, S., Inman, D. M., Danilov, C. A., Morrison, R. S., Calkins, D. J., Horner, P. J. (2010). Metabolic vulnerability disposes retinal ganglion cell axons to dysfunction in a model of glaucomatous degeneration. Journal of Neuroscience, 30(16), 5644–5652. https://doi.org/10.1523/JNEUROSCI.5956-09.2010
Google Scholar | Crossref | Medline Baltan, S., Morrison, R. S., Murphy, S. P. (2013). Novel protective effects of histone deacetylase inhibition on stroke and white matter ischemic injury. Neurotherapeutics: The Journal of the American Society for Experimental NeuroTherapeutics, 10(4), 798–807. https://doi.org/10.1007/s13311-013-0201-x
Google Scholar | Crossref | Medline Baltan, S., Murphy, S. P., Danilov, C. A., Bachleda, A., Morrison, R. S. (2011). Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. Journal of Neuroscience, 31(11), 3990–3999. https://doi.org/10.1523/JNEUROSCI.5379-10.2011
Google Scholar | Crossref | Medline Baltan, S., Shi, Y., Keep, R. F., Chen, J. (2019). The effect of aging on brain injury and recovery after stroke. Neurobiology of Disease, 126, 1–2. https://doi.org/10.1016/j.nbd.2019.04.001
Google Scholar | Crossref | Medline Bastian, C., Brunet, S., Baltan, S. (2020). Ex vivo studies of optic nerve axon electrophysiology. In Babetto, E. (Ed.), Axon degeneration: Methods and protocols (2020/06/12 ed., Vol. 2143, pp. 169–177). Springer US.
Google Scholar | Crossref Bastian, C., Day, J., Politano, S., Quinn, J., Brunet, S., Baltan, S. (2019). Preserving mitochondrial structure and motility promotes recovery of white matter after ischemia. Neuromolecular Medicine, 21(4), 484–492. https://doi.org/10.1007/s12017-019-08550-w
Google Scholar | Crossref | Medline Bastian, C., Quinn, J., Doherty, C., Franke, C., Faris, A., Brunet, S., Baltan, S. (2019). Role of brain glycogen during ischemia, aging and cell-to-cell interactions. In DiNuzzo, M., Schousboe, A. (Eds.), Brain glycogen metabolism (2019/11/02 ed., Vol. 23, pp. 347–361). Springer International Publishing.
Google Scholar | Crossref Bastian, C., Zaleski, J., Stahon, K., Parr, B., McCray, A., Day, J., Brunet, S., Baltan, S. (2018). NOS3 inhibition confers post-ischemic protection to young and aging white matter integrity by conserving mitochondrial dynamics and miro-2 levels. Journal of Neuroscience, 38(28), 6247–6266. https://doi.org/10.1523/JNEUROSCI.3017-17.2018
Google Scholar | Crossref | Medline Battistutta, R., Cozza, G., Pierre, F., Papinutto, E., Lolli, G., Sarno, S., O’Brien, S. E., Siddiqui-Jain, A., Haddach, M., Anderes, K., Ryckman, D. M., Meggio, F., Pinna, L. A. (2011). Unprecedented selectivity and structural determinants of a new class of protein kinase CK2 inhibitors in clinical trials for the treatment of cancer. Biochemistry, 50(39), 8478–8488. https://doi.org/10.1021/bi2008382
Google Scholar | Crossref | Medline Brose, S. A., Golovko, S. A., Golovko, M. Y. (2016). Fatty acid biosynthesis inhibition increases reduction potential in neuronal cells under hypoxia. Frontiers in Neuroscience, 10, 546. https://doi.org/10.3389/fnins.2016.00546
Google Scholar | Crossref | Medline Brown, A. M., Tekkok, S. B., Ransom, B. R. (2003). Glycogen regulation and functional role in mouse white matter. Journal of Physiology, 549(Pt 2), 501–512. https://doi.org/10.1113/jphysiol.2003.042416
Google Scholar | Crossref | Medline | ISI Bushati, N., Cohen, S. M. (2007). microRNA functions. Annual Review of Cell and Developmental Biology, 23, 175–205. https://doi.org/10.1146/annurev.cellbio.23.090506.123406
Google Scholar | Crossref | Medline | ISI Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P. M., Doykan, C. E., Fanek, Z., Liu, L., Chen, Z., Rothstein, J. D., Ransohoff, R. M., Gygi, S. P., Antel, J. P., Weiner, H. L. (2014). Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nature Neuroscience, 17(1), 131–143. https://doi.org/10.1038/nn.3599
Google Scholar | Crossref | Medline | ISI Carroll, S. L., Miller, M. L., Frohnert, P. W., Kim, S. S., Corbett, J. A. (1997). Expression of neuregulins and their putative receptors, ErbB2 and ErbB3, is induced during Wallerian degeneration. Journal of Neuroscience, 17(5), 1642–1659. https://doi.org/10.1523/JNEUROSCI.17-05-01642.1997
Google Scholar | Crossref | Medline Carthew, R. W., Sontheimer, E. J. (2009). Origins and mechanisms of miRNAs and siRNAs. Cell, 136(4), 642–655. https://doi.org/10.1016/j.cell.2009.01.035
Google Scholar | Crossref | Medline | ISI Cavallotti, C., Cavallotti, D., Pescosolido, N., Pacella, E. (2003). Age-related changes in rat optic nerve: Morphological studies. Anatomia, Histologia. Embryologia, 32(1), 12–16. https://doi.org/10.1046/j.1439-0264.2003.00431.x
Google Scholar | Crossref | Medline Cavallotti, C., Pacella, E., Pescosolido, N., Tranquilli-Leali, F. M., Feher, J. (2002). Age-related changes in the human optic nerve. Canadian Journal of Ophthalmology, 37(7), 389–394. https://doi.org/10.1016/s0008-4182(02)80040-0
Google Scholar | Crossref | Medline Chen, Z., Wang, K., Huang, J., Zheng, G., Lv, Y., Luo, N., Liang, M., Huang, L. (2018). Upregulated serum MiR-146b serves as a biomarker for acute ischemic stroke. Cellular Physiology and Biochemistry, 45(1), 397–405. https://doi.org/10.1159/000486916
Google Scholar | Crossref | Medline Chiha, W., Bartlett, C. A., Petratos, S., Fitzgerald, M., Harvey, A. R. (2020). Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Experimental Neurology, 326, 113167. https://doi.org/10.1016/j.expneurol.2019.113167
Google Scholar | Crossref | Medline Connolly, R. M., Li, H., Jankowitz, R. C., Zhang, Z., Rudek, M. A., Jeter, S. C., Slater, S. A., Powers, P., Wolff, A. C., Fetting, J. H., Brufsky, A., Piekarz, R., Ahuja, N., Laird, P. W., Shen, H., Weisenberger, D. J., Cope, L., Herman, J. G., Somlo, G., … Stearns, V. (2017). Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: A phase II national cancer institute/stand up to cancer study. Clinical Cancer Research, 23(11), 2691–2701. https://doi.org/10.1158/1078-0432.CCR-16-1729
Google Scholar | Crossref | Medline Denk, F., Huang, W., Sidders, B., Bithell, A., Crow, M., Grist, J., Sharma, S., Ziemek, D., Rice, A. S. C., Buckley, N. J., McMahon, S. B. (2013). HDAC Inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain, 154(9), 1668–1679. https://doi.org/10.1016/j.pain.2013.05.021
Google Scholar | Crossref | Medline Fancy, S. P., Baranzini, S. E., Zhao, C., Yuk, D. I., Irvine, K. A., Kaing, S., Sanai, N., Franklin, R. J., Rowitch, D. H. (2009). Dysregulation of the Wnt pathway inhibits timely myelination and remyelination in the mammalian CNS. Genes and Development, 23(13), 1571–1585. https://doi.org/10.1101/gad.1806309
Google Scholar | Crossref | Medline Faure, V., Cerini, C., Paul, P., Berland, Y., Dignat-George, F., Brunet, P. (2006). The uremic solute p-cresol decreases leukocyte transendothelial migration in vitro. International Immunology, 18(10), 1453–1459. https://doi.org/10.1093/intimm/dxl077
Google Scholar | Crossref | Medline Feng, N., Wang, Z., Zhang, Z., He, X., Wang, C., Zhang, L. (2015). miR-487b promotes human umbilical vein endothelial cell proliferation, migration, invasion and tube formation through regulating THBS1. Neuroscience Letters, 591, 1–7. https://doi.org/10.1016/j.neulet.2015.02.002
Google Scholar | Crossref | Medline Formisano, L., Guida, N., Valsecchi, V., Cantile, M., Cuomo, O., Vinciguerra, A., Laudati, G., Pignataro, G., Sirabella, R., Di Renzo, G., Annunziato, L. (2015). Sp3/REST/HDAC1/HDAC2 complex represses and Sp1/HIF-1/p300 Complex activates ncx1 gene transcription, in brain ischemia and in ischemic brain preconditioning, by epigenetic mechanism. Journal of Neuroscience, 35(19), 7332–7348. https://doi.org/10.1523/JNEUROSCI.2174-14.2015
Google Scholar | Crossref | Medline Foster, K. G., Fingar, D. C. (2010). Mammalian target of rapamycin (mTOR): Conducting the cellular signaling symphony. Journal of Biological Chemistry, 285(19), 14071–14077. https://doi.org/10.1074/jbc.R109.094003
Google Scholar | Crossref | Medline Galloway, D. A., Moore, C. S. (2016). miRNAs as emerging regulators of oligodendrocyte development and differentiation. Frontiers in Cell and Developmental Biology, 4, 59. https://doi.org/10.3389/fcell.2016.00059
Google Scholar | Crossref | Medline Gallucci, G. M., Tong, M., Chen, X., Stonestreet, B. S., Lin, A., de la Monte, S. M. (2019). Rapid alterations in cerebral white matter lipid profiles after ischemic-reperfusion brain injury in fetal sheep as demonstrated by MALDI-mass spectrometry. Pediatric and Developmental Pathology, 22(4), 344–355. https://doi.org/10.1177/1093526619826721
Google Scholar | SAGE Journals Gallucci, G. M., Tong, M., Chen, X., Stonestreet, B. S., Lin, A., de la Monte, S. M. (2020). Critical shifts in cerebral white matter lipid profiles after ischemic–reperfusion brain injury in fetal sheep as demonstrated by the positive Ion mode MALDI-mass spectrometry. Cell Medicine, 12(4), 2155179019897002. https://doi.org/10.1177/2155179019897002
Google Scholar Grandemange, S., Herzig, S., Martinou, J. C. (2009). Mitochondrial dynamics and cancer. Seminars in Cancer Biology, 19(1), 50–56. https://doi.org/10.1016/j.semcancer.2008.12.001
Google Scholar | Crossref | Medline Hahnen, E., Eyupoglu, I. Y., Brichta, L., Haastert, K., Trankle, C., Siebzehnrubl, F. A., Riessland, M., Holker, I., Claus, P., Romstock, J., Buslei, R., Wirth, B., Blumcke, I. (2006). In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. Journal of Neurochemistry, 98(1), 193–202. https://doi.org/10.1111/j.1471-4159.2006.03868.x
Google Scholar | Crossref | Medline He, J., Gao, Y., Wu, G., Lei, X., Zhang, Y., Pan, W., Yu, H. (2018). Molecular mechanism of estrogen-mediated neuroprotection in the relief of brain ischemic injury. BMC Genetics, 19(1), 46. https://doi.org/10.1186/s12863-018-0630-y
Google Scholar | Crossref | Medline Hinman, J. D. (2014). The back and forth of axonal injury and repair after stroke. Current Opinion in Neurology, 27(6), 615–623. https://doi.org/10.1097/WCO.0000000000000149
Google Scholar | Crossref | Medline Hu, G., Liao, K., Yang, L., Pendyala, G., Kook, Y., Fox, H. S., Buch, S. (2017). Tat-mediated induction of miRs-34a & −138 promotes astrocytic activation via downregulation of SIRT1: Implications for aging in HAND. Journal of Neuroimmune Pharmacology, 12(3), 420–432. https://doi.org/10.1007/s11481-017-9730-0
Google Scholar | Crossref |

留言 (0)

沒有登入
gif