Emerging Roles of DLK1 in the Stem Cell Niche and Cancer Stemness

1. da Rocha, ST, Tevendale, M, Knowles, E, Takada, S, Watkins, M, Ferguson-Smith, AC. Restricted co-expression of DLK1 and the reciprocally imprinted non-coding RNA, Gtl2: implications for cis-acting control. Dev Biol. 2007;306(2):810–23. doi:10.1016/j.ydbio.2007.02.043.
Google Scholar | Crossref2. Laborda, J . The role of the epidermal growth factor-like protein DLK in cell differentiation. Histol Histopathol. 2000;15(1):119–29. doi:10.14670/HH-15.119.
Google Scholar | Crossref3. Ferrón, SR, Charalambous, M, Radford, E, McEwen, K, Wildner, H, Hind, E, Morante-Redolat, JM, Laborda, J, Guillemot, F, Bauer, SR, Fariñas, I, Ferguson-Smith, AC. Postnatal loss of DLK1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature. 2011;475(7356):381–5. doi:10.1038/nature10229.
Google Scholar | Crossref4. Falix, FA, Aronson, DC, Lamers, WH, Gaemers, IC. Possible roles of DLK1 in the Notch pathway during development and disease. Biochim Biophys Acta. 2012;1822(6):988–95. doi:10.1016/j.bbadis.2012.02.003.
Google Scholar | Crossref5. Sakajiri, S, O’Kelly, J, Yin, D, Miller, CW, Hofmann, WK, Oshimi, K, Shih, LY, Kim, KH, Sul, HS, Jensen, CH, Teisner, B, Kawamata, N, Koeffler, HP. DLK1 in normal and abnormal hematopoiesis. Leukemia. 2005;19(8):1404–10. doi:10.1038/sj.leu.2403832.
Google Scholar | Crossref6. Abdallah, BM, Jensen, CH, Gutierrez, G, Leslie, RGQ, Jensen, TG, Kassem, M. Regulation of human skeletal stem cells differentiation by DLK1/Pref-1. J Bone Miner Res. 2004;19(5):841–52. doi:10.1359/JBMR.040118.
Google Scholar | Crossref7. Begum, A, Kim, Y, Lin, Q, Yun, Z. DLK1, delta-like 1 homolog (Drosophila), regulates tumor cell differentiation in vivo. Cancer Lett. 2012;318(1):26–33. doi:10.1016/j.canlet.2011.11.032.
Google Scholar | Crossref8. Grassi, ES, Pantazopoulou, V, Pietras, A. Hypoxia-induced release, nuclear translocation, and signaling activity of a DLK1 intracellular fragment in glioma. Oncogene. 2020;39:4028–44. doi:10.1038/s41388-020-1273-9.
Google Scholar | Crossref9. Huang, C-C, Cheng, S-H, Wu, C-H, Li, W-Y, Wang, J-S, Kung, M-L, Chu, T-H, Huang, S-T, Feng, C-T, Huang, S-C, Tai, M-H. Delta-like 1 homologue promotes tumorigenesis and epithelial-mesenchymal transition of ovarian high-grade serous carcinoma through activation of Notch signaling. Oncogene. 2019;38(17):3201–15. doi:10.1038/s41388-018-0658-5.
Google Scholar | Crossref10. Kim, Y, Lin, Q, Zelterman, D, Yun, Z. Hypoxia-regulated delta-like 1 homologue enhances cancer cell stemness and tumorigenicity. Cancer Res. 2009;69(24):9271–80. doi:10.1158/0008-5472.CAN-09-1605.
Google Scholar | Crossref11. Grassi, ES, Jeannot, P, Pantazopoulou, V, Berg, TJ, Pietras, A. Niche-derived soluble DLK1 promotes glioma growth. Neoplasia. 2020;22(12):689–701. doi:10.1016/j.neo.2020.10.005.
Google Scholar | Crossref12. Laborda, J, Sausville, EA, Hoffman, T, Notario, V. DLK, a putative mammalian homeotic gene differentially expressed in small cell lung carcinoma and neuroendocrine tumor cell line. J Biol Chem. 1993;268(6):3817–20. doi:10.1016/s0021-9258(18)53544.
Google Scholar | Crossref13. Schmidt, JV, Matteson, PG, Jones, BK, Guan, XJ, Tilghman, SM. The DLK1 and Gtl2 genes are linked and reciprocally imprinted. Genes Dev. 2000;14(16):1997–2002. doi:10.1101/gad.14.16.1997.
Google Scholar | Crossref14. Takada, S, Tevendale, M, Baker, J, Georgiades, P, Campbell, E, Freeman, T, Johnson, MH, Paulsen, M, Ferguson-Smith, AC. Delta-like and Gtl2 are reciprocally expressed differentially methylated linked imprinted genes on mouse chromosome 12. Curr Biol. 2000;10(18):1135–8. doi:10.1016/S0960-9822(00)00704-1.
Google Scholar | Crossref15. Wang, Y, Sul, HS. Ectodomain shedding of preadipocyte factor 1 (Pref-1) by tumor necrosis factor alpha converting enzyme (TACE) and inhibition of adipocyte differentiation. Mol Cell Biol. 2006;26(14):5421–35. doi:10.1128/MCB.02437-05.
Google Scholar | Crossref16. Smas, CM, Green, D, Sul, HS. Structural characterization and alternate splicing of the gene encoding the preadipocyte EGF-like protein Pref-1. Biochemistry. 1994;33(31):9257–65. doi:10.1021/bi00197a029.
Google Scholar | Crossref17. Altenberger, T, Bilban, M, Auer, M, Knosp, E, Wolfsberger, S, Gartner, W, Mineva, I, Zielinski, C, Wagner, L, Luger, A. Identification of DLK1 variants in pituitary- and neuroendocrine tumors. Biochem Biophys Res Commun. 2006;340(3):995–1005. doi:10.1016/j.bbrc.2005.12.094.
Google Scholar | Crossref18. Deiuliis, JA, Li, B, Lyvers-Peffer, PA, Moeller, SJ, Lee, K. Alternative splicing of delta-like 1 homolog (DLK1) in the pig and human. Comp Biochem Physiol—B Biochem Mol Biol. 2006;145(1):50–9. doi:10.1016/j.cbpb.2006.06.003.
Google Scholar | Crossref19. Mei, B, Zhao, L, Chen, L, Sul, HS. Only the large soluble form of preadipocyte factor-1 (Pref-1), but not the small soluble and membrane forms, inhibits adipocyte differentiation: role of alternative splicing. Biochem J. 2002;364(1):137–44. doi:10.1042/bj3640137.
Google Scholar | Crossref20. Jensen, CH, Krogh, TN, Højrup, P, Clausen, PP, Skjødt, K, Larsson, L-I, Enghild, JJ, Teisner, B. Protein structure of fetal antigen 1 (FA1): a novel circulating human epidermal-growth-factor-like protein expressed in neuroendocrine tumors and its relation to the gene products of DLK and pG2. Eur J Biochem. 1994;225(1):83–92. doi:10.1111/j.1432-1033.1994.00083.x.
Google Scholar | Crossref21. Smas, CM, Chen, L, Sul, HS. Cleavage of membrane-associated pref-1 generates a soluble inhibitor of adipocyte differentiation. Mol Cell Biol. 1997;17(2):977–88. doi:10.1128/mcb.17.2.977.
Google Scholar | Crossref22. Traustadóttir, GÁ, Jensen, CH, Thomassen, M, Beck, HC, Mortensen, SB, Laborda, J, Baladrón, V, Sheikh, SP, Andersen, DC. Evidence of non-canonical NOTCH signaling: delta-like 1 homolog (DLK1) directly interacts with the NOTCH1 receptor in mammals. Cell Signal. 2016;28(4):246–54. doi:10.1016/j.cellsig.2016.01.003.
Google Scholar | Crossref23. Baladrón, V, Ruiz-Hidalgo, MJ, Nueda, ML, Díaz-Guerra, MJM, García-Ramírez, JJ, Bonvini, E, Gubina, E, Laborda, J. DLK acts as a negative regulator of Notch1 activation through interactions with specific EGF-like repeats. Exp Cell Res. 2005;303(2):343–59. doi:10.1016/j.yexcr.2004.10.001.
Google Scholar | Crossref24. Nueda, M-L, Baladrón, V, Sánchez-Solana, B, Ballesteros, M-Á, Laborda, J. The EGF-like protein DLK1 inhibits notch signaling and potentiates adipogenesis of mesenchymal cells. J Mol Biol. 2007;367(5):1281–93. doi:10.1016/j.jmb.2006.10.043.
Google Scholar | Crossref25. Rodríguez, P, Higueras, MA, González-Rajal, A, Alfranca, A, Fierro-Fernández, M, García-Fernández, RA, Ruiz-Hidalgo, MJ, Monsalve, M, Rodríguez-Pascual, F, Redondo, JM, De La Pompa, JL, Laborda, J, Lamas, S. The non-canonical NOTCH ligand DLK1 exhibits a novel vascular role as a strong inhibitor of angiogenesis. Cardiovasc Res. 2012;93(2):232–41. doi:10.1093/cvr/cvr296.
Google Scholar | Crossref26. Bray, SJ, Takada, S, Harrison, E, Shen, SC, Ferguson-Smith, AC. The atypical mammalian ligand Delta-like homologue 1 (DLK1) can regulate Notch signalling in Drosophila. BMC Dev Biol. 2008;8:11. doi:10.1186/1471-213X-8-11.
Google Scholar | Crossref27. Surmacz, B, Noisa, P, Risner-Janiczek, JR, Hui, K, Ungless, M, Cui, W, Li, M. DLK1 promotes neurogenesis of human and mouse pluripotent stem cell-derived neural progenitors via modulating notch and BMP signalling. Stem Cell Rev Rep. 2012;8(2):459–71. doi:10.1007/s12015-011-9298-7.
Google Scholar | Crossref28. Müller, D, Cherukuri, P, Henningfeld, K, Poh, CH, Wittler, L, Grote, P, Schlüter, O, Schmidt, J, Laborda, J, Bauer, SR, Brownstone, RM, Marquardt, T. DLK1 promotes a fast motor neuron biophysical signature required for peak force execution. Science. 2014;343(6176):1264–6. doi:10.1126/science.1246448.
Google Scholar | Crossref29. García-Gallastegui, P, Ibarretxe, G, Garcia-Ramírez, JJ, Baladrón, V, Aurrekoetxea, M, Nueda, ML, Naranjo, AI, Santaolalla, F, Sánchez-del Rey, A, Laborda, J, Unda, F. DLK1 regulates branching morphogenesis and parasympathetic innervation of salivary glands through inhibition of NOTCH signalling. Biol Cell. 2014;106(8):237–53. doi:10.1111/boc.201300086.
Google Scholar | Crossref30. Kaneta, M, Osawa, M, Osawa, M, Sudo, K, Nakauchi, H, Farr, AG, Takahama, Y. A role for Pref-1 and HES-1 in thymocyte development. J Immunol. 2000;164(1):256–64. doi:10.4049/jimmunol.164.1.256.
Google Scholar | Crossref31. Qi, X, Chen, Z, Liu, D, Cen, J, Gu, M. Expression of DLK1 gene in myelodysplastic syndrome determined by microarray, and its effects on leukemia cells. Int J Mol Med. 2008;22(1):61–8. doi:10.3892/ijmm.22.1.61.
Google Scholar | Crossref32. Ohno, N, Izawa, A, Hattori, M, Kageyama, R, Sudo, T. DLK inhibits stem cell factor-induced colony formation of murine hematopoietic progenitors: Hes-1-independent effect. Stem Cells. 2001;19(1):71–9. doi:10.1634/stemcells.19-1-71.
Google Scholar | Crossref33. Andersen, DC, Laborda, J, Baladron, V, Kassem, M, Sheikh, SP, Jensen, CH. Dual role of delta-like 1 homolog (DLK1) in skeletal muscle development and adult muscle regeneration. Dev. 2013;140(18):3743–53. doi:10.1242/dev.095810.
Google Scholar | Crossref34. Traustadóttir, GÁ, Jensen, CH, Garcia Ramirez, JJ, Beck, HC, Sheikh, SP, Andersen, DC. The non-canonical NOTCH1 ligand Delta-like 1 homolog (DLK1) self-interacts in mammals. Int J Biol Macromol. 2017;97:460–7. doi:10.1016/j.ijbiomac.2017.01.067.
Google Scholar | Crossref35. Mortensen, SB, Jensen, CH, Schneider, M, Thomassen, M, Kruse, TA, Laborda, J, Sheikh, SP, Andersen, DC. Membrane-tethered delta-like 1 homolog (DLK1) restricts adipose tissue size by inhibiting preadipocyte proliferation. Diabetes. 2012;61(11):2814–22. doi:10.2337/db12-0176.
Google Scholar | Crossref36. Andersen, DC, Jensen, CH, Schneider, M, Nossent, AY, Eskildsen, T, Hansen, JL, Teisner, B, Sheikh, SP. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes. Exp Cell Res. 2010;316(10):1681–91. doi:10.1016/j.yexcr.2010.04.002.
Google Scholar | Crossref37. Wang, Y, Zhao, L, Smas, C, Sul, HS. Pref-1 interacts with fibronectin to inhibit adipocyte differentiation. Mol Cell Biol. 2010;30(14):3480–92. doi:10.1128/mcb.00057-10.
Google Scholar | Crossref38. Nueda, ML, García-Ramírez, JJ, Laborda, J, Baladrón, V. DLK1 specifically interacts with insulin-like growth factor binding protein 1 to modulate adipogenesis of 3T3-L1 cells. J Mol Biol. 2008;379(3):428–42. doi:10.1016/j.jmb.2008.03.070.
Google Scholar | Crossref39. Miyaoka, Y, Tanaka, M, Imamura, T, Takada, S, Miyajima, A. A novel regulatory mechanism for Fgf18 signaling involving cysteine-rich FGF receptor (Cfr) and delta-like protein (DLK). Development. 2010;137(1):159–67. doi:10.1242/dev.041574.
Google Scholar | Crossref40. Hudak, CS, Sul, HS. Pref-1, a gatekeeper of adipogenesis. Front Endocrinol. 2013;4:79. doi:10.3389/fendo.2013.00079.
Google Scholar | Crossref | Medline41. Li, L, Forman, SJ, Bhatia, R. Expression of DLK1 in hematopoietic cells results in inhibition of differentiation and proliferation. Oncogene. 2005;24(27):4472–6. doi:10.1038/sj.onc.1208637.
Google Scholar | Crossref42. Lindström, M, Pedrosa-Domellöf, F, Thornell, LE. Satellite cell heterogeneity with respect to expression of MyoD, myogenin, DLK1 and c-Met in human skeletal muscle: application to a cohort of power lifters and sedentary men. Histochem Cell Biol. 2010;134(4):371–85. doi:10.1007/s00418-010-0743-5.
Google Scholar | Crossref43. Davis, E, Jensen, CH, Schroder, HD, Farnir, F, Shay-Hadfield, T, Kliem, A, Cockett, N, Georges, M, Charlier, C. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype. Curr Biol. 2004;14(20):1858–62. doi:10.1016/j.cub.2004.09.079.
Google Scholar | Crossref44. Christophersen, NS, Grønborg, M, Petersen, TN, Fjord-Larsen, L, Jørgensen, JR, Juliusson, B, Blom, N, Rosenblad, C, Brundin, P. Midbrain expression of Delta-like 1 homologue is regulated by GDNF and is associated with dopaminergic differentiation. Exp Neurol. 2007;204(2):791–801. doi:10.1016/j.expneurol.2007.01.014.
Google Scholar | Crossref45. Bauer, M, Szulc, J, Meyer, M, Jensen, CH, Terki, TA, Meixner, A, Kinkl, N, Gasser, T, Aebischer, P, Ueffing, M. Delta-like 1 participates in the specification of ventral midbrain progenitor derived dopaminergic neurons. J Neurochem. 2008;104(4):1101–15. doi:10.1111/j.1471-4159.2007.05037.x.
Google Scholar | Crossref46. Da Rocha, ST, Charalambous, M, Lin, SP, Gutteridge, I, Ito, Y, Gray, D, Dean, W, Ferguson-Smith, AC. Gene dosage effects of the imprinted delta-like homologue 1 (DLK1/Pref1) in development: implications for the evolution of imprinting. PLoS Genet. 2009;5(2):1000392. doi:10.1371/journal.pgen.1000392.
Google Scholar | Crossref47. Ceder, JA, Jansson, L, Helczynski, L, Abrahamsson, P-A. Delta-like 1 (DLK-1), a novel marker of prostate basal and candidate epithelial stem cells, is downregulated by notch signalling in intermediate/transit amplifying cells of the human prostate. Eur Urol. 2008;54(6):1344–53. doi:10.1016/j.eururo.2008.03.006.
Google Scholar | Crossref48. Deng, X, Zhang, X, Li, W, Feng, RX, Li, L, Yi, GR, Zhang, XN, Yin, C, Yu, HY, Zhang, JP, Lu, B, Hui, L, Xie, WF. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell. 2018;23(1):114–22.e3. doi:10.1016/j.stem.2018.05.022.
Google Scholar | Crossref49. Huang, J, Zhang, X, Zhang, M, Zhu, J, De Zhang, YL, Lin, Y, Wang, KS, Qi, XF, Zhang, Q, Liu, GZ, Yu, J, Cui, Y, Yang, PY, Wang, ZQ, Han, ZG. Up-regulation of DLK1 as an imprinted gene could contribute to human hepatocellular carcinoma. Carcinogenesis. 2007;28(5):1094–103. doi:

留言 (0)

沒有登入
gif