A Protective Role of Tumor Necrosis Factor Superfamily-15 in Intracerebral Hemorrhage-Induced Secondary Brain Injury

Atkinson, J. J., Senior, R. M. (2003). Matrix metalloproteinase-9 in lung remodeling. American Journal of Respiratory Cell and Molecular Biology, 28(1), 12–24. https://doi.org/10.1165/rcmb.2002-0166TR
Google Scholar | Crossref | Medline Chen, Q., Jin, M., Yang, F., Zhu, J., Xiao, Q., Zhang, L. (2013). Matrix metalloproteinases: Inflammatory regulators of cell behaviors in vascular formation and remodeling. Mediators of Inflammation, 2013, article ID 928315. https://doi.org/10.1155/2013/928315
Google Scholar | Crossref Chew, L. J., Pan, H., Yu, J., Tian, S., Huang, W. Q., Zhang, J. Y., Pang, S., Li, L. Y. (2002). A novel secreted splice variant of vascular endothelial cell growth inhibitor. The FASEB Journal, 16(7), 742–744. https://doi.org/10.1096/fj.01-0757fje
Google Scholar | Crossref | Medline Christoffersson, G., Vågesjö, J., Vandooren, J., Lidén, M., Massena, S., Reinert, R., Brissova, M., Powers, A., Opdenakker, G., Phillipson, M. (2012). VEGF-A recruits a proangiogenic MMP-9-delivering neutrophil subset that induces angiogenesis in transplanted hypoxic tissue. Blood, 120(23), 4653–4662. https://doi.org/10.1182/blood-2012-04-421040
Google Scholar | Crossref | Medline Duan, X., Wen, Z., Shen, H., Shen, M., Chen, G. (2016). Intracerebral hemorrhage, oxidative stress, and antioxidant therapy, oxidative medicine and cellular longevity. Oxidative Medicine and Cellular Longevity, 2016, article ID 1203285. https://doi.org/10.1155/2016/1203285
Google Scholar | Crossref Gao, W., Zhao, Z., Yu, G., Zhou, Z., Zhou, Y., Hu, T., Jiang, R., Zhang, J. (2015). VEGI attenuates the inflammatory injury and disruption of blood–brain barrier partly by suppressing the TLR4/NF-κB signaling pathway in experimental traumatic brain injury. Brain Research, 1622 (5), 230–239. https://doi.org/10.1016/j.brainres.2015.04.035
Google Scholar | Crossref | Medline | ISI Gokhale, S., Caplan, L. R., James, M. L. (2015). Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage. Stroke, 46(3), 886–892. https://doi.org/10.1161/STROKEAHA.114.007682
Google Scholar | Crossref | Medline Hansen, T. M., Moss, A., Brindle, N. (2008). Vascular endothelial growth factor and angiopoietins in neurovascular regeneration and protection following stroke. Current Neurovascular Research, 5(4), 236–245. https://doi.org/10.2174/156720208786413433
Google Scholar | Crossref | Medline Kerber, M., Reiss, Y., Wickersheim, A., Jugold, M., Kiessling, F., Heil, M., Tchaikovski, V., Waltenberger, J., Shibuya, M., Plate, K. H., Machein, M. R. (2008). Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Research, 68(18), 7342–7351. https://doi.org/10.1158/0008-5472.CAN-07-6241
Google Scholar | Crossref | Medline Lapchak, P. A., Chapman, D. F., Zivin, J. A. (2000). Metalloproteinase inhibition reduces thrombolytic (tissue plasminogen activator)-induced hemorrhage after thromboembolic stroke. Stroke, 31(12), 3034–3040. https://doi.org/10.1161/01.STR.31.12.3034
Google Scholar | Crossref | Medline Lee, S. J., Tsang, P. S., Diaz, T. M., Wei, B. Y., Stetler-Stevenson, W. G. (2010). TIMP-2 modulates VEGFR-2 phosphorylation and enhances phosphodiesterase activity in endothelial cells. Laboratory Investigation, 90(3), 374–382. https://doi.org/10.1038/labinvest.2009.136
Google Scholar | Crossref | Medline Marini, S., Morotti, A., Ayres, A. M., Crawford, K., Kourkoulis, C. E., Lena, U. K., Gurol, E. M., Viswanathan, A., Goldstein, J. N., Greenberg, S. M., Biffi, A., Rosand, J., Anderson, C. D. (2017). Sex differences in intracerebral hemorrhage expansion and mortality. Journal of the Neurological Sciences, 379, 112–116. https://doi.org/10.1016/j.jns.2017.05.057
Google Scholar | Crossref | Medline Nag, S., Takahashi, J. L., Kilty, D. W. (1997). Role of vascular endothelial growth factor in blood–brain barrier breakdown and angiogenesis in brain trauma. Journal of Neuropathology and Experimental Neurology, 56(8), 912–921. https://doi.org/10.1097/00005072-199708000-00009
Google Scholar | Crossref | Medline | ISI Pfefferkorn, T., Rosenberg, G. A. (2003). Closure of the blood–brain barrier by matrix metalloproteinase inhibition reduces rtPA-mediated mortality in cerebral ischemia with delayed reperfusion. Stroke, 34(8), 2025–2030. https://doi.org/10.1161/01.STR.0000083051.93319.28
Google Scholar | Crossref | Medline Qi, J., Qin, T., Xu, L., Zhang, K., Yang, G.-L., Li, J., Xiao, H., Zhang, Z., Li, L.-Y. (2013). TNFSF15 inhibits vasculogenesis by regulating relative levels of membrane-bound and soluble isoforms of VEGF receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 110(34), 13863–13868. https://doi.org/10.1073/pnas.1304529110
Google Scholar | Crossref | Medline | ISI Qin, T., Xu, G., Qi, J., Yang, G.-L., Zhang, K., Liu, H., Xu, L., Xiang, R., Xiao, G., Cao, H., Wei, Y., Zhang, Q., Li, L.-Y. (2015). Tumour necrosis factor superfamily member 15 (TNFSF15) facilitates lymphangiogenesis via up-regulation of VEGFR3 gene expression in lymphatic endothelial cells. The Journal of Pathology, 237(3), 307–318. https://doi.org/10.1002/path.4577
Google Scholar | Crossref | Medline Rempe, R. G., Hartz, A. M. S., Bauer, B. (2016). Matrix metalloproteinases in the brain and blood–brain barrier: Versatile breakers and makers. Journal of Cerebral Blood Flow & Metabolism, 36(9), 1481–1507. https://doi.org/10.1177/0271678X16655551
Google Scholar | SAGE Journals | ISI Rosenberg, G. A., Navratil, M. (1997). Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology, 48(4), 921–926. https://doi.org/10.1212/WNL.48.4.921
Google Scholar | Crossref | Medline Rundhaug, J. E. (2005). Matrix metalloproteinases and angiogenesis. Journal of Cellular and Molecular Medicine, 9(2), 267–285. https://doi.org/10.1111/j.1582-4934.2005.tb00355.x
Google Scholar | Crossref | Medline Schmued, L. C., Hopkins, K. J. (2000). Fluoro-Jade B: A high affinity fluorescent marker for the localization of neuronal degeneration. Brain Research, 874(2), 123–130. https://doi.org/10.1016/S0006-8993(00)02513-0
Google Scholar | Crossref | Medline Seo, D.-W., Li, H., Guedez, L., Wingfield, P. T., Diaz, T., Salloum, R., Wei, B.-y., Stetler-Stevenson, W. G. (2003). TIMP-2 mediated inhibition of angiogenesis. Cell, 114(2), 171–180. https://doi.org/10.1016/S0092-8674(03)00551-8
Google Scholar | Crossref | Medline Urday, S., Kimberly, W. T., Beslow, L. A., Vortmeyer, A. O., Selim, M. H., Rosand, J., Simard, J. M., Sheth, K. N. (2015). Targeting secondary injury in intracerebral haemorrhage–perihaematomal oedema. Nature Reviews. Neurology, 11 (2), 111–122. https://doi.org/10.1038/nrneurol.2014.264
Google Scholar | Crossref | Medline | ISI Valable, S., Montaner, J., Bellail, A., Berezowski, V., Brillault, J., Cecchelli, R., Divoux, D., MacKenzie, E. T., Bernaudin, M., Roussel, S., Petit, E. (2005). VEGF-induced BBB permeability is associated with an MMP-9 activity increase in cerebral ischemia: Both effects decreased by ANG-1. Journal of Cerebral Blood Flow & Metabolism, 25(11), 1491–1504. https://doi.org/10.1038/sj.jcbfm.9600148
Google Scholar | SAGE Journals | ISI Wang, J., Doré, S. (2007). Inflammation after intracerebral hemorrhage. Journal of Cerebral Blood Flow & Metabolism, 27(5), 894–908. https://doi.org/10.1038/sj.jcbfm.9600403
Google Scholar | SAGE Journals | ISI Wang, J., Rogove, A. D., Tsirka, A. E., Tsirka, S. E. (2003). Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Annals of Neurology, 54(5), 655–664. https://doi.org/10.1002/ana.10750
Google Scholar | Crossref | Medline Wang, J., Tsirka, S. E. (2005). Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain, 128(7), 1622–1633. https://doi.org/10.1093/brain/awh489
Google Scholar | Crossref | Medline Wang, Y., Chen, J., Yang, L., Li, J., Wu, W., Huang, M., Lin, L., Su, S. (2019). Tumor-contacted neutrophils promote metastasis by a CD90-TIMP-1 juxtacrine–paracrine loop. Clinical Cancer Research, 25(6), 1957–1969. https://doi.org/10.1158/1078-0432.CCR-18-2544
Google Scholar | Crossref | Medline Yang, G.-L., Han, Z., Xiong, J., Wang, S., Wei, H., Qin, T., Xiao, H., Liu, Y., Xu, L., Qi, J., Zhang, Z., Jiang, R., Zhang, J., Li, L.-Y. (2019). Inhibition of intracranial hemangioma growth and hemorrhage by TNFSF15. The FASEB Journal, 33(9), 10505–10514. https://doi.org/10.1096/fj.201802758RRR
Google Scholar | Crossref | Medline Yang, G.-L., Zhao, Z., Qin, T., Wang, D., Chen, L., Xiang, R., Xi, Z., Jiang, R., Zhang, Z., Zhang, J., Li, L.-Y. (2017). TNFSF15 inhibits VEGF-stimulated vascular hyperpermeability by inducing VEGFR2 dephosphorylation. The FASEB Journal, 31(5), 2001–2012. https://doi.org/10.1096/fj.201600800R
Google Scholar | Crossref | Medline Yu, J., Tian, S., Metheny-Barlow, L., Chew, L. J., Hayes, A. J., Pan, H., Yu, G. L., Li, L. Y. (2001). Modulation of endothelial cell growth arrest and apoptosis by vascular endothelial growth inhibitor. Circulation Research, 89(12), 1161–1167. https://doi.org/10.1161/hh2401.101909
Google Scholar | Crossref | Medline Zhai, Y., Ni, J., Jiang, G. W., Lu, J., Xing, L., Lincoln, C., Carter, K. C., Janat, F., Kozak, D., Xu, S., Rojas, L., Aggarwal, B. B., Ruben, S., Li, L. Y., Gentz, R., Yu, G. L. (1999). VEGI, a novel cytokine of the tumor necrosis factor family, is an angiogenesis inhibitor that suppresses the growth of colon carcinomas in vivo. The FASEB Journal, 13(1), 181–189. https://doi.org/10.1096/fasebj.13.1.181
Google Scholar | Crossref | Medline Zhu, H., Wang, Z., Yu, J., Yang, X., He, F., Liu, Z., Che, F., Chen, X., Ren, H., Hong, M., Wang, J. (2019). Role and mechanisms of cytokines in the secondary brain injury after intracerebral hemorrhage. Progress in Neurobiology, 178, 101610. https://doi.org/10.1016/j.pneurobio.2019.03.003
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif