Forelimb Motor Skills Deficits Following Thoracic Spinal Cord Injury: Underlying Dopaminergic and Neural Oscillatory Changes in Rat Primary Motor Cortex

Athanasiou, A., Terzopoulos, N., Pandria, N., Xygonakis, I., Foroglou, N., Polyzoidis, K., Bamidis, P. D. (2018). Functional brain connectivity during multiple motor imagery tasks in spinal cord injury. Neural Plasticity, 2018, 1–20. https://doi.org/10.1155/2018/9354207
Google Scholar | Crossref Awenowicz, P. W., Porter, L. L. (2002). Local application of dopamine inhibits pyramidal tract neuron activity in the rodent motor cortex. Journal of Neurophysiology, 88(6), 3439–3451. https://doi.org/10.1152/jn.00078.2002
Google Scholar | Crossref | Medline Babiloni, C., Vecchio, F., Babiloni, F., Brunelli, G., Carducci, F., Cincotti, F., Pizzella, V., Romani, G., Tecchio, F., Rossini, P. (2004). Coupling between "“hand” primary sensorimotor cortex and lower limb muscles after ulnar nerve surgical transfer in paraplegia. Behavioral Neuroscience, 118(1), 214–222. https://doi.org/10.1037/0735-7044.118.1.214
Google Scholar | Crossref | Medline Castro, A., Diaz, F., van Boxtel, G. J. (2007). How does a short history of spinal cord injury affect movement-related brain potentials? The European Journal of Neuroscience, 25(9), 2927–2934. https://doi.org/10.1111/j.1460-9568.2007.05532.x
Google Scholar | Crossref | Medline Censor, N., Sagi, D., Cohen, L. G. (2012). Common mechanisms of human perceptual and motor learning. Nature Reviews Neuroscience, 13(9), 658–664. https://doi.org/10.1038/nrn3315
Google Scholar | Crossref | Medline Curt, A., Alkadhi, H., Crelier, G. R., Boendermaker, S. H., Hepp-Reymond, M. C., Kollias, S. S. (2002). Changes of non-affected upper limb cortical representation in paraplegic patients as assessed by fMRI. Brain, 125(Pt 11), 2567–2578. https://doi.org/10.1093/brain/awf250
Google Scholar | Crossref | Medline Fallahi, S., Babri, S., Farajdokht, F., Ghiasi, R., Zangbar, H. S., Karimi, P., Mohaddes, G. (2019). Neuroprotective effect of ghrelin in methamphetamine-treated male rats. Neuroscience Letter. 707, 134304. https://doi.org/10.1016/j.neulet.2019.134304
Google Scholar | Crossref | Medline Fallani, D. V., Astolfi, F., Cincotti, L., Mattia, F., Marciani, D., Salinari, M. G., Kurths, S., Gao, J., Cichocki, S., Colosimo, A., Babiloni, F. (2007). Cortical functional connectivity networks in normal and spinal cord injured patients: Evaluation by graph analysis. Human Brain Mapping, 28(12), 1334–1346. https://doi.org/10.1002/hbm.20353
Google Scholar | Crossref | Medline | ISI Frost, S. B., Dunham, C. L., Barbay, S., Krizsan-Agbas, D., Winter, M. K., Guggenmos, D. J., Nudo, R. J. (2015). Output properties of the cortical hindlimb motor area in spinal cord-injured rats. Journal of Neurotrauma, 32(21), 1666–1673. https://doi.org/10.1089/neu.2015.3961
Google Scholar | Crossref | Medline Frost, S. B., Iliakova, M., Dunham, C., Barbay, S., Arnold, P., Nudo, R. J. (2013). Reliability in the location of hindlimb motor representations in Fischer-344 rats: Laboratory investigation. Journal of Neurosurgery. Spine, 19(2), 248–255. https://doi.org/10.3171/2013.4.spine12961
Google Scholar | Crossref | Medline Gaspar, P., Duyckaerts, C., Alvarez, C., Javoy-Agid, F., Berger, B. (1991). Alterations of dopaminergic and noradrenergic innervations in motor cortex in Parkinson's Disease. Annals of Neurology, 30(3), 365–374. https://doi.org/10.1002/ana.410300308
Google Scholar | Crossref | Medline Georgopoulos, A. P. (2000). Neural aspects of cognitive motor control. Current Opinion in Neurobiology, 10(2), 238–241. https://doi.org/10.1016/S0959-4388(00)00072-6
Google Scholar | Crossref | Medline Ghorbani, M., Shahabi, P., Ebrahimi-kalan, A., Soltani-Zangbar, H., Mahmoudi, J., Bani, S., Sadeghzadeh-Oskouei, B., Rafiee-Byraami, Y., Salimi, O. (2018). Induction of traumatic brain and spinal cord injury models in rat using a modified impactor device. Physiology and Pharmacology, 22(4), 228–239.
Google Scholar Ghosh, A., Haiss, F., Sydekum, E., Schneider, R., Gullo, M., Wyss, M. T., Mueggler, T., Baltes, C., Rudin, M., Weber, B., Schwab, M. (2010). Rewiring of hindlimb corticospinal neurons after spinal cord injury. Nature Neuroscience, 13(1), 97–104. https://doi.org/10.1038/nn.2448
Google Scholar | Crossref | Medline Gourab, K., Schmit, B. D. (2010). Changes in movement-related beta-band EEG signals in human spinal cord injury. Clinical Neurophysiology, 121(12), 2017–2023. https://doi.org/10.1016/j.clinph.2010.05.012
Google Scholar | Crossref | Medline Hosp, J. A., Luft, A. R. (2013). Dopaminergic meso-cortical projections to m1: Role in motor learning and motor cortex plasticity. Frontiers in Neurology, 4(145). https://doi.org/10.3389/fneur.2013.00145
Google Scholar | Medline Hou, J. M., Yan, R. B., Xiang, Z. M., Zhang, H., Liu, J., Wu, Y. T., Zhao, M., Pan, Q. Y., Song, L. H., Zhang, W., Li, H-T., Liu, H-L., & Sun, T-S. (2014). Brain sensorimotor system atrophy during the early stage of spinal cord injury in humans. Neuroscience, 266, 208–215. https://doi.org/10.1016/j.neuroscience.2014.02.013
Google Scholar | Crossref | Medline Jia, X., Kohn, A. (2011). Gamma rhythms in the brain. PLoS Biology, 9(4), e1001045. doi:10.1371/journal.pbio.1001045
Google Scholar | Crossref | Medline Kokotilo, K. J., Eng, J. J., Curt, A. (2009). Reorganization and preservation of motor control of the brain in spinal cord injury: A systematic review. Journal of Neurotrauma, 26(11), 2113–2126. https://doi.org/10.1089/neu.2008.0688
Google Scholar | Crossref | Medline | ISI Li, Q., Ko, H., Qian, Z. M., Yan, L. Y. C., Chan, D. C. W., Arbuthnott, G., Ke, Y., Yung, W. H. (2017). Refinement of learned skilled movement representation in motor cortex deep output layer. Nature Communications, 8, 15834. https://doi.org/10.1038/ncomms15834
Google Scholar | Crossref | Medline Liu, J., Tang, T., Yang, H. (2011). Protective effect of deferoxamine on experimental spinal cord injury in rat. Injury, 42(8), 742–745. https://doi.org/10.1016/j.injury.2010.08.028
Google Scholar | Crossref | Medline Lotze, M., Laubis-Herrmann, U., Topka, H., Erb, M., Grodd, W. (1999). Reorganization in the primary motor cortex after spinal cord injury – A functional magnetic resonance (fMRI) study. Restorative Neurology and Neuroscience, 14(2–3), 183–187.
Google Scholar Luft, A. R., Buitrago, M. M. (2005). Stages of motor skill learning. Molecular Neurobiology, 32(3), 205–216. https://doi.org/10.1385/MN:32:3:205
Google Scholar | Crossref | Medline Luft, A. R., Buitrago, M. M., Ringer, T., Dichgans, J., Schulz, J. B. (2004). Motor skill learning depends on protein synthesis in motor cortex after training. Journal of Neuroscience, 24(29), 6515–6520. https://doi.org/10.1523/JNEUROSCI.1034-04.2004
Google Scholar | Crossref | Medline Mattia, D., Cincotti, F., Mattiocco, M., Scivoletto, G., Marciani, M. G., Babiloni, F. (2006). Motor-related cortical dynamics to intact movements in tetraplegics as revealed by high-resolution EEG. Human Brain Mapping, 27(6), 510–519. https://doi.org/10.1002/hbm.20195
Google Scholar | Crossref | Medline McCracken, C. B., Kiss, Z. H. (2014). Time and frequency-dependent modulation of local field potential synchronization by deep brain stimulation. PLoS One, 9(7), e102576. https://doi.org/10.1371/journal.pone.0102576
Google Scholar | Crossref | Medline Moxon, K. A., Oliviero, A., Aguilar, J., Foffani, G. (2014). Cortical reorganization after spinal cord injury: Always for good? Neuroscience, 283, 78–94. https://doi.org/10.1016/j.neuroscience.2014.06.056
Google Scholar | Crossref | Medline | ISI Mutha, P. K., Haaland, K. Y. (2014). Cognitive aspects of motor control. Cortex, 57, 299–300. discussion 306-298. https://doi.org/10.1016/j.cortex.2014.03.001
Google Scholar | Crossref | Medline Nardone, R., Holler, Y., Brigo, F., Seidl, M., Christova, M., Bergmann, J., Golaszewski, S., Trinka, E. (2013). Functional brain reorganization after spinal cord injury: Systematic review of animal and human studies. Brain Research, 1504, 58–73. https://doi.org/10.1016/j.brainres.2012.12.034
Google Scholar | Crossref | Medline Neafsey, E. J., Bold, E. L., Haas, G., Hurley-Gius, K. M., Quirk, G., Sievert, C. F., Terreberry, R. R. (1986). The organization of the rat motor cortex: A microstimulation mapping study. Brain Research, 396(1), 77–96. https://doi.org/10.1016/s0006-8993(86)80191-3
Google Scholar | Crossref | Medline Nimmrich, V., Draguhn, A., Axmacher, N. (2015). Neuronal network oscillations in neurodegenerative diseases. Neuromolecular Medicine, 17(3), 270–284. https://doi.org/10.1007/s12017-015-8355-9
Google Scholar | Crossref | Medline Ozkan, M., Johnson, N. W., Sehirli, U. S., Woodhall, G. L., Stanford, I. M. (2017). Dopamine acting at D1-like, D2-like and alpha1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex. PLoS One, 12(7), e0181633. https://doi.org/10.1371/journal.pone.0181633
Google Scholar | Crossref | Medline Papale, A. E., Hooks, B. M. (2018). Circuit changes in motor cortex during motor skill learning. Neuroscience, 368, 283–297. https://doi.org/10.1016/j.neuroscience.2017.09.010
Google Scholar | Crossref | Medline Pearson-Fuhrhop, K. M., Minton, B., Acevedo, D., Shahbaba, B., Cramer, S. C. (2013). Genetic variation in the human brain dopamine system influences motor learning and its modulation by L-Dopa. PLoS One 8(4), e61197. https://doi.org/10.1371/journal.pone.0061197
Google Scholar | Crossref | Medline Qian, Y., Chen, M., Forssberg, H., Diaz Heijtz, R. (2013). Genetic variation in dopamine-related gene expression influences motor skill learning in mice. Genes, Brain, and Behavior, 12(6), 604–614. https://doi.org/10.1111/gbb.12062
Google Scholar | Crossref | Medline Rosenkranz, K., Williamon, A., Rothwell, J. C. (2007). Motorcortical excitability and synaptic plasticity is enhanced in professional musicians. Journal of Neuroscience, 27(19), 5200–5206. https://doi.org/10.1523/JNEUROSCI.0836-07.2007
Google Scholar | Crossref | Medline Sabre, L., Tomberg, T., Korv, J., Kepler, J., Kepler, K., Linnamagi, U., Asser, T. (2016). Brain activation in the chronic phase of traumatic spinal cord injury. Spinal Cord, 54(1), 65–68. https://doi.org/10.1038/sc.2015.158
Google Scholar | Crossref | Medline Saturno, E., Bonato, C., Miniussi, C., Lazzaro, V., Callea, L. (2008). Motor cortex changes in spinal cord injury: A TMS study. Neurological Research, 30(10), 1084–1085. https://doi.org/10.1179/174313208X332968
Google Scholar | Crossref | Medline Solstrand Dahlberg, L., Becerra, L., Borsook, D., Linnman, C. (2018). Brain changes after spinal cord injury, a quantitative meta-analysis and review. Neuroscience and Biobehavioral Reviews, 90, 272–293. https://doi.org/10.1016/j.neubiorev.2018.04.018
Google Scholar | Crossref | Medline Tandon, S., Kambi, N., Jain, N. (2008). Overlapping representations of the neck and whiskers in the rat motor cortex revealed by mapping at different anaesthetic depths. The European Journal of Neuroscience, 27(1), 228–237. https://doi.org/10.1111/j.1460-9568.2007.05997.x
Google Scholar | Crossref | Medline Vitrac, C., Péron, S., Frappé, I., Fernagut, P.-O., Jaber, M., Gaillard, A., Benoit-Marand, M. (2014). Dopamine control of pyramidal neuron activity in the primary motor cortex via D2 receptors. Frontiers in Neural Circuits, 8(13), 13. https://doi.org/10.3389/fncir.2014.00013
Google Scholar | Crossref | Medline Volkow, N. D., Wang, G. J., Fowler, J. S., Ding, Y. S., Gur, R. C., Gatley, J., Logan, J., Moberg, P. J., Hitzemann, R., Smith, G., Pappas, N. (1998). Parallel loss of presynaptic and postsynaptic dopamine markers in normal aging. Annals of Neurology, 44(1), 143–147. https://doi.org/10.1002/ana.410440125

留言 (0)

沒有登入
gif