Astrocytic Hydrogen Sulfide Regulates Supraoptic Cellular Activity in the Adaptive Response of Lactating Rats to Chronic Social Stress

Belin, V., Moos, F., Richard, P. (1984). Synchronization of oxytocin cells in the hypothalamic paraventricular and supraoptic nuclei in suckled rats: Direct proof with paired extracellular recordings. Experimental Brain Research, 57(1), 201–203. https://doi.org/10.1007/BF00231147
Google Scholar Bonfanti, L., Poulain, D. A., Theodosis, D. T. (1993). Radial glia-like cells in the supraoptic nucleus of the adult rat. Journal of Neuroendocrinology, 5(1), 1–5. https://doi.org/10.1111/j.1365-2826.1993.tb00357.x
Google Scholar | Crossref | Medline Bosch, O. J. (2011). Maternal nurturing is dependent on her innate anxiety: The behavioral roles of brain oxytocin and vasopressin. Hormones and Behavior, 59(2), 202–212. https://doi.org/10.1016/j.yhbeh.2010.11.012
Google Scholar | Crossref | Medline | ISI Boutet, C., Vercueil, L., Schelstraete, C., Buffin, A., Legros, J. J. (2006). Oxytocin and maternal stress during the post-partum period. Annals Endocrinology (Paris), 67(3), 214–223. https://doi.org/10.1016/S0003-4266(06)72589-6
Google Scholar | Crossref | Medline Coletti, R., de Lima, J. B. M., Vechiato, F. M. V., de Oliveira, F. L., Debarba, L. K., Almeida-Pereira, G., Elias, L. L. K., Antunes-Rodrigues, J. (2019). Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. Journal of Neuroendocrinology, 31(2), e12686. https://doi.org/10.1111/jne.12686
Google Scholar | Crossref Cong, H. M., Gao, Q. P., Song, G. Q., Ye, Y. X., Li, X. L., Zhang, L. S., Wang, X. F. (2020). Hydrogen-rich saline ameliorates hippocampal neuron apoptosis through up-regulating the expression of cystathionine beta-synthase (CBS) after cerebral ischemia- reperfusion in rats. Iranian Journal of Basic Medical Sciences, 23(4), 494–499. https://doi.org/10.22038/ijbms.2020.41751.9857
Google Scholar Csikota, P., Fodor, A., Balazsfi, D., Pinter, O., Mizukami, H., Weger, S., Heilbronn, R., Engelmann, M., Zelena, D. (2016). Vasopressinergic control of stress-related behavior: Studies in brattleboro rats. Stress, 19(4), 349–361. https://doi.org/10.1080/10253890.2016.1183117
Google Scholar | Crossref | Medline Demura, H. (1994). Stress and hormone. Nihon Naibunpi Gakkai Zasshi, 70(5), 479–488. https://doi.org/10.1507/endocrine1927.70.5_479
Google Scholar Dyball, R. E., Koizumi, K. (1969). Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophysial hormone release. Journal of Physiology, 201(3), 711–722. https://doi.org/10.1113/jphysiol.1969.sp008783
Google Scholar | Crossref | Medline Enokido, Y., Suzuki, E., Iwasawa, K., Namekata, K., Okazawa, H., Kimura, H. (2005). Cystathionine beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB Journal, 19(13), 1854–1856. https://doi.org/10.1096/fj.05-3724fje
Google Scholar | Crossref | Medline Gainer, H., Sarne, Y., Brownstein, M. J. (1977). Biosynthesis and axonal transport of rat neurohypophysial proteins and peptides. Journal of Cell Biology, 73(2), 366–381. https://doi.org/10.1083/jcb.73.2.366
Google Scholar | Crossref Gao, J., Wu, R., Davis, C., Li, M. (2018). Activation of 5-HT2A receptor disrupts rat maternal behavior. Neuropharmacology, 128, 96–105. https://doi.org/10.1016/j.neuropharm.2017.09.037
Google Scholar | Crossref | Medline Hatton, G. I., Modney, B. K., Salm, A. K. (1992). Increases in dendritic bundling and dye coupling of supraoptic neurons after the induction of maternal behavior. Annals of the New York Academy of Sciences, 652, 142–155. https://doi.org/10.1111/j.1749-6632.1992.tb34351.x
Google Scholar | Crossref | Medline Hatton, G. I., Wang, Y. F. (2008). Neural mechanisms underlying the milk ejection burst and reflex. Progress in Brain Research, 170, 155–166. https://doi.org/10.1016/S0079-6123(08)00414-7
Google Scholar | Crossref | Medline Heinrichs, M., Neumann, I., Ehlert, U. (2002). Lactation and stress: Protective effects of breast-feeding in humans. Stress, 5(3), 195–203. https://doi.org/10.1080/1025389021000010530
Google Scholar | Crossref Higuchi, T., Honda, K., Fukuoka, T., Negoro, H., Wakabayashi, K. (1985). Release of oxytocin during suckling and parturition in the rat. Journal of Endocrinology, 105(3), 339–346. https://doi.org/10.1677/joe.0.1050339
Google Scholar | Crossref | Medline Hou, D., Jin, F., Li, J., Lian, J., Liu, M., Liu, X., Xu, Y., Zhang, C., Zhao, C., Jia, S., Jiao, R., Liu, X. Y., Wang, X., Zhang, Y., Wang, Y.-F. (2016). Model roles of the hypothalamo-neurohypophysial system in neuroscience study. Biochem Pharmacol (Los Angel), 5, 211. https://doi.org/10.4172/2167-0501.1000211
Google Scholar | Crossref Jurek, B., Neumann, I. D. (2018). The oxytocin receptor: From intracellular signaling to behavior. Physiological Reviews, 98(3), 1805–1908. https://doi.org/10.1152/physrev.00031.2017
Google Scholar | Crossref | Medline Kim, P., Strathearn, L., Swain, J. E. (2016). The maternal brain and its plasticity in humans. Hormones and Behavior, 77, 113–123. https://doi.org/10.1016/j.yhbeh.2015.08.001
Google Scholar | Crossref | Medline Klampfl, S. M., Bosch, O. J. (2019). Mom doesn’t care: When increased brain CRF system activity leads to maternal neglect in rodents. Frontiers in Neuroendocrinology, 53, 100735. https://doi.org/10.1016/j.yfrne.2019.01.001
Google Scholar | Crossref | Medline Kuksis, M., Ferguson, A. V. (2015). Actions of a hydrogen sulfide donor (NaHS) on transient sodium, persistent sodium, and voltage-gated calcium currents in neurons of the subfornical organ. Journal of Neurophysiology, 114(3), 1641–1651. https://doi.org/10.1152/jn.00252.2015
Google Scholar | Crossref | Medline Li, D., Li, T., Yu, J., Liu, X., Jia, S., Wang, X., Wang, P., Wang, Y. F. (2020a). Astrocytic modulation of supraoptic oxytocin neuronal activity in Rat dams with Pup-deprivation at different stages of lactation. Neurochemical Research. 2020 Sept 15. https://doi.org/10.1007/s11064-020-03129-5. Online ahead of print.
Google Scholar Li, D., Liu, H., Liu, X., Wang, H., Li, T., Wang, X., Jia, S., Wang, P., Wang, Y. F. (2020c). Involvement of hyperpolarization-activated cyclic nucleotide-gated channel 3 in oxytocin neuronal activity in lactating rats With Pup deprivation. ASN Neuro, 12, 1759091420944658. https://doi.org/10.1177/1759091420944658
Google Scholar | SAGE Journals Li, D., Liu, X., Liu, H., Li, T., Jia, S., Wang, X., Wang, P., Qin, D., Wang, Y. F. (2021a). Key roles of cyclooxygenase 2-protein kinase A-hyperpolarization-activated cyclic nucleotide-gated channel 3 pathway in the regulation of oxytocin neuronal activity in lactating rats with intermittent Pup-deprivation. Neuroscience, 452, 13–25. https://doi.org/10.1016/j.neuroscience.2020.10.016
Google Scholar | Crossref | Medline Li, D., Liu, X., Liu, T., Liu, H., Tong, L., Jia, S., Wang, Y. F. (2020b). Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia, 68(5), 878–897. https://doi.org/10.1002/glia.23734
Google Scholar | Crossref | Medline Li, T., Jia, S. W., Hou, D., Wang, X., Li, D., Liu, Y., Cui, D., Liu, X., Hou, C. M., Wang, P., Brown, C. H., Wang, Y. F. (2021b). Oxytocin modulation of maternal behavior and Its association With immunological activity in rats With cesarean delivery. ASN Neuro, 13, 17590914211014731. https://doi.org/10.1177/17590914211014731
Google Scholar | SAGE Journals Liu, X., Herbison, A. E. (2016). Kisspeptin regulation of neuronal activity throughout the central nervous system. Endocrinology and metabolism, 31(2), 193–205. https://doi.org/10.3803/EnM.2016.31.2.193
Google Scholar | Crossref Liu, X. Y., Li, D., Li, T., Liu, H., Cui, D., Liu, Y., Jia, S., Wang, X., Jiao, R., Zhu, H., Zhang, F., Qin, D., Wang, Y. F. (2019). Effects of intranasal oxytocin on Pup deprivation-evoked aberrant maternal behavior and hypogalactia in Rat dams and the underlying mechanisms. Frontiers in Neuroscience, 13, 122. https://doi.org/10.3389/fnins.2019.00122
Google Scholar | Crossref | Medline Mason, W. T., Ho, Y. W., Hatton, G. I. (1984). Axon collaterals of supraoptic neurones: Anatomical and electrophysiological evidence for their existence in the lateral hypothalamus. Neuroscience, 11(1), 169–182. https://doi.org/10.1016/0306-4522(84)90221-5
Google Scholar | Crossref Matsushita, H., Latt, H. M., Koga, Y., Nishiki, T., Matsui, H. (2019). Oxytocin and stress: Neural mechanisms, stress-related disorders, and therapeutic approaches. Neuroscience, 417, 1–10. https://doi.org/10.1016/j.neuroscience.2019.07.046
Google Scholar | Crossref | Medline Menon, R., Grund, T., Zoicas, I., Althammer, F., Fiedler, D., Biermeier, V., Bosch, O. J., Hiraoka, Y., Nishimori, K., Eliava, M., Grinevich, V., Neumann, I. D. (2018). Oxytocin signaling in the lateral septum prevents social fear during lactation. Current Biology, 28(7), 1066–1078. e1066. https://doi.org/10.1016/j.cub.2018.02.044
Google Scholar | Crossref | Medline Meyer-Lindenberg, A., Domes, G., Kirsch, P., Heinrichs, M. (2011). Oxytocin and vasopressin in the human brain: Social neuropeptides for translational medicine. Nature Reviews Neuroscience, 12(9), 524–538. https://doi.org/10.1038/nrn3044
Google Scholar | Crossref Murgatroyd, C. A., Taliefar, M., Bradburn, S., Carini, L. M., Babb, J. A., Nephew, B. C. (2015). Social stress during lactation, depressed maternal care, and neuropeptidergic gene expression. Behavioural Pharmacology, 26(7 Spec No), 642–653. https://doi.org/10.1097/FBP.0000000000000147
Google Scholar | Crossref Nagai, Y., Tsugane, M., Oka, J., Kimura, H. (2004). Hydrogen sulfide induces calcium waves in astrocytes. FASEB Journal, 18(3) 557–559. https://doi.org/10.1096/fj.03-1052fje
Google Scholar | Crossref | Medline Neumann, I., Ludwig, M., Engelmann, M., Pittman, Q. J., Landgraf, R. (1993). Simultaneous microdialysis in blood and brain: Oxytocin and vasopressin release in response to central and peripheral osmotic stimulation and suckling in the rat. Neuroendocrinology, 58(6), 637–645. https://doi.org/10.1159/000126604
Google Scholar | Crossref | Medline | ISI Nii, T., Eguchi, R., Yamaguchi, S., Otsuguro, K. I. (2021). Hydrogen sulfide induces Ca(2 + ) release from the endoplasmic reticulum and suppresses ATP-induced Ca(2 + ) signaling in rat spinal cord astrocytes. European Journal of Pharmacology, 891, 173684. https://doi.org/10.1016/j.ejphar.2020.173684
Google Scholar | Crossref | Medline Nissen, E., Gustavsson, P., Widstrom, A. M., Uvnas-Moberg, K. (1998). Oxytocin, prolactin, milk production and their relationship with personality traits in women after vaginal delivery or cesarean section. Journal of Psychosomatic Obstetrics and Gynaecology, 19(1), 49–58. https://doi.org/10.3109/01674829809044221
Google Scholar | Crossref | Medline Okabe, S., Tsuneoka, Y., Takahashi, A., Ooyama, R., Watarai, A., Maeda, S., Honda, Y., Nagasawa, M., Mogi, K., Nishimori, K., Kuroda, M., Koide, T., Kikusui, T. (2017). Pup exposure facilitates retrieving behavior via the oxytocin neural system in female mice. Psychoneuroendocrinology, 79, 20–30. https://doi.org/10.1016/j.psyneuen.2017.01.036
Google Scholar | Crossref | Medline Okere, C. O., Wang, Y. F., Higuchi, T., Negoro, H., Okutani, F., Takahashi, S., Murata, T. (1996). The effect of systemic and central nitric oxide administration on milk availability in lactating rats. Neuroreport, 8(1), 243–247. https://doi.org/10.1097/00001756-199612200-00049
Google Scholar | Crossref Olza, I., Uvnas-Moberg, K., Ekstrom-Bergstrom, A., Leahy-Warren, P., Karlsdottir, S. I., Nieuwenhuijze, M., Villarmea, S., Hadjigeorgiou, E., Kazmierczak, M., Spyridou, A., Buckley, S. (2020). Birth as a neuro-psycho-social event: An integrative model of maternal experiences and their relation to neurohormonal events during childbirth. PLoS One, 15(7), e0230992. https://doi.org/10.1371/journal.pone.0230992
Google Scholar | Crossref | Medline Parpura, V., Zorec, R. (2010). Gliotransmission: Exocytotic release from astrocytes. Brain Research Reviews, 63(1-2), 83–92. https://doi.org/10.1016/j.brainresrev.2009.11.008
Google Scholar | Crossref | Medline Pedersen, C. A., Boccia, M. L. (2002). Oxytocin links mothering received, mothering bestowed and adult stress responses. Stress, 5(4), 259–267. https://doi.org/10.1080/1025389021000037586
Google Scholar | Crossref Plasencia, G., Luedicke, J. M., Nazarloo, H. P., Carter, C. S., Ebner, N. C. (2019). Plasma oxytocin and vasopressin levels in young and older men and women: Functional relationships with attachment and cognition. Psychoneuroendocrinology, 110, 104419. https://doi.org/10.1016/j.psyneuen.2019.104419
Google Scholar | Crossref | Medline Ponzio, T. A., Wang, Y. F., Hatton, G. I. (2006). Activation of adenosine A2A receptors alters postsynaptic currents and depolarizes neurons of the supraoptic nucleus. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 291(2), R359–R366. https://doi.org/10.1152/ajpregu.00747.2005

留言 (0)

沒有登入
gif