Temporal dynamics of nitric oxide wave in early vasculogenesis

1. Mujoo, K, Krumenacker, JS, Wada, Y, Murad, F. Differential expression of nitric oxide signaling components in undifferentiated and differentiated human embryonic stem cells. Stem Cells Dev 2006; 15: 779–787.
Google Scholar | Crossref | Medline2. Nath, AK, Enciso, J, Kuniyasu, M, et al. Nitric oxide modulates murine yolk sac vasculogenesis and rescues glucose induced vasculopathy. Development 2004; 131: 2485–2496.
Google Scholar | Crossref | Medline3. Gentile, C, Muise-Helmericks, RC, Drake, CJ. VEGF-mediated phosphorylation of eNOS regulates angioblast and embryonic endothelial cell proliferation. Dev Biol 2013; 373: 163–175.
Google Scholar | Crossref | Medline4. Teichert, AM, Scott, JA, Robb, GB, et al. Endothelial nitric oxide synthase gene expression during murine embryogenesis: Commencement of expression in the embryo occurs with the establishment of a unidirectional circulatory system. Circ Res 2008; 103: 24–33.
Google Scholar | Crossref | Medline | ISI5. Kevil, CG, Lefer, DJ. Review focus on inorganic nitrite and nitrate in cardiovascular health and disease. Cardiovasc Res 2011; 89: 489–491.
Google Scholar | Crossref | Medline6. Cai, WJ, Wang, MJ, Moore, PK, et al. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 2007; 76: 29–40.
Google Scholar | Crossref | Medline7. Yasuda, M, Ohzeki, Y, Shimizu, S, et al. Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells. Life Sci 1999; 64: 249–258.
Google Scholar | Crossref | Medline8. Li Volti, G, Sacerdoti, D, Sangras, B, et al. Carbon monoxide signaling in promoting angiogenesis in human microvessel endothelial cells. Antioxid Redox Signal 2005; 7: 704–710.
Google Scholar | Crossref | Medline9. Ghatpande, S, Ghatpande, A, Sher, J, et al. Retinoid signaling regulates primitive (yolk sac) hematopoiesis. Blood 2002; 99: 2379–2386.
Google Scholar | Crossref | Medline | ISI10. Sinha, S, Sridhara, SR, Srinivasan, S, et al. NO (nitric oxide): The ring master. Eur J Cell Biol 2011; 90: 58–71.
Google Scholar | Crossref | Medline11. Krause, BJ, Hanson, MA, Casanello, P. Role of nitric oxide in placental vascular development and function. Placenta 2011; 32: 797–805.
Google Scholar | Crossref | Medline12. Krock, BL, Skuli, N, Simon, MC. Hypoxia-induced angiogenesis: Good and evil. Genes Cancer 2011; 2: 1117–1133.
Google Scholar | SAGE Journals13. Jung, Y, Isaacs, JS, Lee, S, et al. Hypoxia-inducible factor induction by tumour necrosis factor in normoxic cells requires receptor-interacting protein-dependent nuclear factor kappa B activation. Biochem J 2003; 370: 1011–1017.
Google Scholar | Crossref | Medline | ISI14. Lee, K, Lee, JH, Boovanahalli, SK, et al. (Aryloxyacetylamino)benzoic acid analogues: A new class of hypoxia-inducible factor-1 inhibitors. J Med Chem 2007; 50: 1675–1684.
Google Scholar | Crossref | Medline15. Shin, HM, Kim, MH, Kim, BH, et al. Inhibitory action of novel aromatic diamine compound on lipopolysaccharide-induced nuclear translocation of NF-κB without affecting IκB degradation. FEBS Lett 2004; 571: 50–54.
Google Scholar | Crossref | Medline16. Van Faassen, EE, Bahrami, S, Feelisch, M, et al. Nitrite as regulator of hypoxic signaling in mammalian physiology. Med Res Rev 2009; 29: 683–741.
Google Scholar | Crossref | Medline | ISI17. Webb, AJ, Milsom, AB, Rathod, KS, et al. Mechanisms underlying erythrocyte and endothelial nitrite reduction to nitric oxide in hypoxia: Role for xanthine oxidoreductase and endothelial nitric oxide synthase. Circ Res 2008; 103: 957–964.
Google Scholar | Crossref | Medline18. Li, H, Liu, X, Cui, H, et al. Characterization of the mechanism of cytochrome P450 reductase-cytochrome P450-mediated nitric oxide and nitrosothiol generation from organic nitrates. J Biol Chem 2006; 281: 12546–12554.
Google Scholar | Crossref | Medline19. Degli Esposti, M . Inhibitors of NADH-ubiquinone reductase: An overview. Biochim Biophys Acta 1998; 1364: 222–235.
Google Scholar | Crossref | Medline20. Aicher, A, Heeschen, C, Mildner-Rihm, C, et al. Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nat Med 2003; 9: 1370–1376.
Google Scholar | Crossref | Medline | ISI21. Murohara, T, Witzenbichler, B, Spyridopoulos, I, et al. Role of endothelial nitric oxide synthase in endothelial cell migration. Arterioscler Thromb Vasc Biol 1999; 19: 1156–1161.
Google Scholar | Crossref | Medline | ISI22. Simon, MC, Keith, B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 2008; 9: 285–296.
Google Scholar | Crossref | Medline | ISI23. Pyriochou, A, Beis, D, Koika, V, et al. Soluble guanylyl cyclase activation promotes angiogenesis. J Pharmacol Exp Ther 2006; 319: 663–671.
Google Scholar | Crossref | Medline24. Pyriochou, A, Zhou, Z, Koika, V, et al. The phosphodiesterase 5 inhibitor sildenafil stimulates angiogenesis through a protein kinase G/MAPK pathway. J Cell Physiol 2007; 211: 197–204.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif