Motor Cortical Network Flexibility is Associated With Biomechanical Walking Impairment in Chronic Stroke

1. Clark, DJ, Ting, LH, Zajac, FE, Neptune, RR, Kautz, SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103(2):844-857. doi:10.1152/jn.00825.2009.
Google Scholar | Crossref | Medline2. Allen, JL, Kesar, TM, Ting, LH. Motor module generalization across balance and walking is impaired after stroke. J Neurophysiol. 2019;122:277-289. doi:10.1152/jn.00561.2018. Published online.
Google Scholar | Crossref | Medline3. van de Port, I, Kwakkel, G, Lindeman, E. Community ambulation in patients with chronic stroke: how is it related to gait speed? J Rehabil Med. 2008;40(1):23-27. doi:10.2340/16501977-0114.
Google Scholar | Crossref | Medline | ISI4. Kesar, TM, Stinear, JW, Wolf, SL. The use of transcranial magnetic stimulation to evaluate cortical excitability of lower limb musculature: challenges and opportunities. Restor Neurol Neurosci. 2018;36:333-348. doi:10.3233/RNN-170801.
Google Scholar | Crossref | Medline5. Hsiao, H, Awad, LN, Palmer, JA, Higginson, JS, Binder-Macleod, SA. Contribution of paretic and nonparetic limb peak propulsive forces to changes in walking speed in individuals poststroke. Neurorehabilitation Neural Repair. 2016;30(8):743-752. doi:10.1177/1545968315624780.
Google Scholar | SAGE Journals | ISI6. Bowden, MG, Balasubramanian, CK, Behrman, AL, Kautz, SA. Validation of a speed-based classification system using quantitative measures of walking performance poststroke. Neurorehabilitation Neural Repair. 2008;22(6):672-675. doi:10.1177/1545968308318837.
Google Scholar | SAGE Journals | ISI7. Palmer, JA, Hsiao, H, Awad, LN, Binder-Macleod, SA. Symmetry of corticomotor input to plantarflexors influences the propulsive strategy used to increase walking speed post-stroke. Clin Neurophysiol. 2016;127(3):1837-1844. doi:10.1016/j.clinph.2015.12.003.
Google Scholar | Crossref | Medline8. Palmer, JA, Hsiao, H, Wright, T, Binder-Macleod, SA. Single session of functional electrical stimulation-assisted walking produces corticomotor symmetry changes related to changes in poststroke walking mechanics. Phys Ther. 2017;97(5):550-560. doi:10.1093/ptj/pzx008.
Google Scholar | Crossref | Medline9. Irlbacher, K, Brocke, J, Mechow, Jv., Brandt, SA. Effects of GABAA and GABAB agonists on interhemispheric inhibition in man. Clin Neurophysiol. 2007;118(2):308-316. doi:10.1016/j.clinph.2006.09.023.
Google Scholar | Crossref | Medline10. Hall, SD, Stanford, IM, Yamawaki, N, et al. The role of GABAergic modulation in motor function related neuronal network activity. Neuroimage. 2011;56(3):1506-1510. doi:10.1016/j.neuroimage.2011.02.025.
Google Scholar | Crossref | Medline11. Rossiter, HE, Boudrias, M-H, Ward, NS. Do movement-related beta oscillations change after stroke? J Neurophysiol. 2014;112:2053-2058. doi:10.1152/jn.00345.2014.
Google Scholar | Crossref | Medline12. Engel, AK, Fries, P. Beta-band oscillations-signalling the status quo? Curr Opin Neurobiol. 2010;20(2):156-165. doi:10.1016/j.conb.2010.02.015.
Google Scholar | Crossref | Medline13. Tremblay, S, Rogasch, NC, Premoli, I, et al. Clinical utility and prospective of TMS–EEG. Clin Neurophysiol. 2019;130(5):802-844. doi:10.1016/j.clinph.2019.01.001.
Google Scholar | Crossref | Medline14. Smith, M-C, Stinear, JW, Alan Barber, P, Stinear, CM. Effects of non-target leg activation, TMS coil orientation, and limb dominance on lower limb motor cortex excitability. Brain Res. 2017;1655:10-16. doi:10.1016/j.brainres.2016.11.004.
Google Scholar | Crossref | Medline | ISI15. Komssi, S, Kähkönen, S, Ilmoniemi, RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp. 2004;21(3):154-164. doi:10.1002/hbm.10159.
Google Scholar | Crossref | Medline | ISI16. Fjell, AM, Walhovd, KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187-221. doi:10.1515/revneuro.2010.21.3.187.
Google Scholar | Crossref | Medline | ISI17. Sivaramakrishnan, A, Madhavan, S. Absence of a transcranial magnetic stimulation-induced lower limb corticomotor response does not affect walking speed in chronic stroke survivors. Stroke. 2018;49(8):2004-2007. doi:10.1161/STROKEAHA.118.021718.
Google Scholar | Crossref | Medline18. Gray, WA, Palmer, JA, Wolf, SL, Borich, MR. Abnormal EEG responses to TMS during the cortical silent period are associated with hand function in chronic stroke. Neurorehabilitation Neural Repair. 2017;31(7):666-676. doi:10.1177/1545968317712470.
Google Scholar | SAGE Journals | ISI19. Palmer, JA, Wheaton, LA, Gray, WA, Saltão da Silva, MA, Wolf, SL, Borich, MR. Role of interhemispheric cortical interactions in poststroke motor function. Neurorehabilitation Neural Repair. 2019;33:762-774. doi:10.1177/1545968319862552. Published online.
Google Scholar | SAGE Journals | ISI20. Zhang, C, Wang, X, Wang, Y, et al. Risk factors for post-stroke seizures: a systematic review and meta-analysis. Epilepsy Res. 2014;108(10):1806-1816. doi:10.1016/j.eplepsyres.2014.09.030.
Google Scholar | Crossref | Medline21. Rossini, PM, Burke, D, Chen, R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application: an updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071-1107. doi:10.1016/j.clinph.2015.02.001.
Google Scholar | Crossref | Medline | ISI22. Awad, LN, Reisman, DS, Kesar, TM, Binder-Macleod, SA. Targeting paretic propulsion to improve poststroke walking function: a preliminary study. Arch Phys Med Rehabil. 2014;95(5):840-848. doi:10.1016/j.apmr.2013.12.012.Targeting.
Google Scholar | Crossref | Medline23. Palmer, JA, Zarzycki, R, Morton, SM, Kesar, TM, Binder-Macleod, SA. Characterizing differential poststroke corticomotor drive to the dorsi-and plantarflexor muscles during resting and volitional muscle activation. J Neurophysiol. 2017;117(4):1615-1624. doi:10.1152/jn.00393.2016.
Google Scholar | Crossref | Medline24. Palmer, JA, Needle, AR, Pohlig, RT, Binder-Macleod, SA. Atypical cortical drive during activation of the paretic and nonparetic tibialis anterior is related to gait deficits in chronic stroke. Clin Neurophysiol. 2016;127:716-723.
Google Scholar | Crossref | Medline25. Groppa, S, Oliviero, A, Eisen, A, et al. A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol. 2012;123:858-882. doi:10.1016/j.clinph.2012.01.010.
Google Scholar | Crossref | Medline | ISI26. Borich, MR, Neva, JL, Boyd, LA. Evaluation of differences in brain neurophysiology and morphometry associated with hand function in individuals with chronic stroke. Restor Neurol Neurosci. 2015;33(1):31-42. doi:10.3233/RNN-140425.
Google Scholar | Crossref | Medline27. van Melick, N, Meddeler, BM, Hoogeboom, TJ, Nijhuis-van der Sanden, MWG, van Cingel, REH. How to determine leg dominance: the agreement between self-reported and observed performance in healthy adults. PloS One. 2017;12(12):e0189876. doi:10.1371/journal.pone.0189876.
Google Scholar | Crossref | Medline28. Mang, CS, Borich, MR, Brodie, SM, et al. Diffusion imaging and transcranial magnetic stimulation assessment of transcallosal pathways in chronic stroke. Clin Neurophysiol. 2015;126(10):1959-1971. doi:10.1016/j.clinph.2014.12.018.
Google Scholar | Crossref | Medline29. Delorme, A, Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods. 2004;134(1):9-21. doi:10.1016/j.jneumeth.2003.10.009.
Google Scholar | Crossref | Medline | ISI30. Nolte, G, Bai, O, Wheaton, L, Mari, Z, Vorbach, S, Hallett, M. Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol. 2004;115:2292-2307. doi:10.1016/j.clinph.2004.04.029.
Google Scholar | Crossref | Medline31. Bütefisch, CM, Wessling, M, Netz, J, Seitz, RJ, Hömberg, V. Relationship between interhemispheric inhibition and motor cortex excitability in subacute stroke patients. Neurorehabilitation Neural Repair. 2008;22(1):4-21. doi:10.1177/1545968307301769.
Google Scholar | SAGE Journals | ISI32. Borich, MR, Wheaton, LA, Brodie, SM, Lakhani, B, Boyd, LA. Evaluating interhemispheric cortical responses to transcranial magnetic stimulation in chronic stroke: A TMS-EEG investigation. Neurosci Lett. 2016;618:25-30.
Google Scholar | Crossref | Medline33. Mille, M-L, Simoneau, M, Rogers, MW. Postural dependence of human locomotion during gait initiation. J Neurophysiol. 2014;112(12):3095-3103. doi:10.1152/jn.00436.2014.
Google Scholar | Crossref | Medline34. Rossiter, HE, Davis, EM, Clark, EV, Boudrias, M-H, Ward, NS. Beta oscillations reflect changes in motor cortex inhibition in healthy ageing. Neuroimage. 2014;91:360-365. doi:10.1016/j.neuroimage.2014.01.012.
Google Scholar | Crossref | Medline35. Swanson, CW, Fling, BW. Associations between gait coordination, variability and motor cortex inhibition in young and older adults. Exp Gerontol. 2018;113:163-172. doi:10.1016/j.exger.2018.10.002.
Google Scholar | Crossref | Medline36. Stinear, CM, Barber, PA, Petoe, M, Anwar, S, Byblow, WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135:2527-2535. doi:10.1093/brain/aws146.
Google Scholar | Crossref | Medline | ISI37. Cassidy, JM, Wodeyar, A, Wu, J, et al. Low-frequency oscillations are a biomarker of injury and recovery after stroke. Stroke. 2020;51:1442-1450. doi:10.1161/STROKEAHA.120.028932.
Google Scholar | Crossref | Medline38. Van Den Berg, FE, Swinnen, SP, Wenderoth, N. Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. Plos One. 2020;6:1-13.
Google Scholar39. Verstynen, T, Albert, N, Aparicio, P, et al. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity. J Neurophysiol. 2020;93:1209-1222. doi:10.1152/jn.00720.2004.
Google Scholar | Crossref40. Conde, V, Tomasevic, L, Akopian, I, et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage. 2019;185:300-312. doi:10.1016/j.neuroimage.2018.10.052.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif