Gene-Specific DNA Methylation Profiles in Pediatric Medulloblastomas

1. Louis David, N, Ohgaki, H, Otmar, D, Wiestler, WKC, eds. WHO Classification of Tumours of the Central Nervous System. Revised 4th ed. Lyon, France: IARC; 2016.
Google Scholar2. Taylor, MD, Northcott, PA, Korshunov, A, et al. Molecular subgroups of medulloblastoma: the current consensus. Acta Neuropathol. 2012; 123(4):465–472.
Google Scholar | Crossref | Medline | ISI3. Zhukova, N, Ramaswamy, V, Remke, M, et al. Subgroup-specific prognostic implications of TP53 mutation in medulloblastoma. J Clin Oncol. 2013; 31(23):2927–2935.
Google Scholar | Crossref | Medline4. Sharma, S, Kelly, TK, Jones, PA. Epigenetics in cancer. Carcinogenesis. 2010; 31(1):27–36.
Google Scholar | Crossref | Medline | ISI5. Jones, PA, Issa, J-PJ, Baylin, S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016; 17(10):630–641.
Google Scholar | Crossref | Medline6. Batora, NV, Sturm, D, Jones, DTW, Kool, M, Pfister, SM, Northcott, PA. Transitioning from genotypes to epigenotypes: why the time has come for medulloblastoma epigenomics. Neuroscience. 2014; 264:171–185.
Google Scholar | Crossref | Medline7. Preusser, M, Berghoff, AS, Manzl, C, et al. Clinical Neuropathology practice news 1-2014: pyrosequencing meets clinical and analytical performance criteria for routine testing of MGMT promoter methylation status in glioblastoma. Clin Neuropathol. 2014; 33(1):6–14.
Google Scholar | Crossref | Medline8. Reifenberger, G, Hentschel, B, Felsberg, J, et al. Predictive impact of MGMT promoter methylation in glioblastoma of the elderly. Int J Cancer. 2012; 131(6):1342–1350.
Google Scholar | Crossref | Medline | ISI9. Berghoff, AS, Kiesel, B, Widhalm, G, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015; 17(8):1064–1075.
Google Scholar | Crossref | Medline10. Yamamura, K, Kosumi, K, Baba, Y, et al. LINE-1 methylation level and prognosis in pancreas cancer: pyrosequencing technology and literature review. Surg Today. 2017; 47(12):1450–1459.
Google Scholar | Crossref | Medline11. Singer, BD. A practical guide to the measurement and analysis of DNA methylation. Am J Respir Cell Mol Biol. 2019; 61(4):417–428.
Google Scholar | Crossref | Medline12. Northcott, PA, Shih, DJH, Remke, M, et al. Rapid, reliable, and reproducible molecular sub-grouping of clinical medulloblastoma samples. Acta Neuropathol. 2012; 123(4):615–626.
Google Scholar | Crossref | Medline13. Hovestadt, V, Jones, DTW, Picelli, S, et al. Decoding the regulatory landscape of medulloblastoma using DNA methylation sequencing. Nature. 2014; 510(7506):537–541.
Google Scholar | Crossref | Medline | ISI14. Roversi, FM, Olalla Saad, ST, Machado-Neto, JA. Serine peptidase inhibitor Kunitz type 2 (SPINT2) in cancer development and progression. Biomed Pharmacother. 2018; 101(October 2017):278–286.
Google Scholar | Crossref | Medline15. Hwang, S, Kim, HE, Min, M, et al. Epigenetic silencing of SPINT2 promotes cancer cell motility via HGF-MET pathway activation in melanoma. J Invest Dermatol. 2015; 135(9):2283–2291.
Google Scholar | Crossref | Medline16. Kongkham, PN, Northcott, PA, Ra, YS, et al. An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res. 2008; 68(23):9945–9953.
Google Scholar | Crossref | Medline17. Ramaswamy, V, Remke, M, Bouffet, E, et al. Risk stratification of childhood medulloblastoma in the molecular era: the current consensus. Acta Neuropathol. 2016; 131(6): 821–831.
Google Scholar | Crossref | Medline18. Seget-Trzensiok, K, Bernhard, SV, Kuffer, C, et al. USP28 and SPINT2 mediate cell cycle arrest after whole genome doubling. bioRxiv. 2020. doi:10.1101/2020.09.18.303834
Google Scholar19. Triscott, J, Yip, S, Johnston, D, et al. Histologic correlates of molecular group 4 pediatric medulloblastoma: a retrospective Canadian review. Pediatr Dev Pathol. 2021; 24(4): 309–317.
Google Scholar | SAGE Journals20. Nakahara, Y, Northcott, PA, Li, M, et al. Genetic and epigenetic inactivation of Kruppel-like factor 4 in medulloblastoma. Neoplasia. 2010; 12(1):20–27.
Google Scholar | Crossref | Medline21. Cohen, M, Kicheva, A, Ribeiro, A, et al. Ptch1 and Gli regulate Shh signalling dynamics via multiple mechanisms. Nat Commun. 2015; 6(1):6709.
Google Scholar | Crossref | Medline22. Diede, SJ, Guenthoer, J, Geng, LN, et al. DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences. Proc Natl Acad Sci U S A. 2010; 107(1):234–239.
Google Scholar | Crossref | Medline23. Jones, DTW, Jäger, N, Kool, M, et al. Dissecting the genomic complexity underlying medulloblastoma. Nature. 2012; 488(7409):100–105.
Google Scholar | Crossref | Medline | ISI24. Pritchard, JI, Olson, JM. Methylation of PTCH1, the patched-1 gene, in a panel of primary medulloblastomas. Cancer Genet Cytogenet. 2008; 180(1):47–50.
Google Scholar | Crossref | Medline25. Pfister, S, Schlaeger, C, Mendrzyk, F, et al. Array-based profiling of reference-independent methylation status (aPRIMES) identifies frequent promoter methylation and consecutive downregulation of ZIC2 in pediatric medulloblastoma. Nucleic Acids Res. 2007; 35(7):e51.
Google Scholar | Crossref | Medline26. Gordon, M, Baksh, S. RASSF1A: Not a prototypical Ras effector. Small GTPases. 2011; 2(3):1–10.
Google Scholar | Crossref | Medline27. Lusher, ME, Lindsey, JC, Latif, F, Pearson, ADJ, Ellison, DW, Clifford, SC. Biallelic epigenetic inactivation of the RASSF1A tumor suppressor gene in medulloblastoma development. Cancer Res. 2002; 62(20):5906–5911.
Google Scholar | Medline28. Inda, MDM, Castresana, JS. RASSF1A promoter is highly methylated in primitive neuroectodermal tumors of the central nervous system. Neuropathology. 2007; 27(4):341–346.
Google Scholar | Crossref | Medline29. Horiguchi, K, Tomizawa, Y, Tosaka, M, et al. Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene. 2003; 22(49):7862–7865.
Google Scholar | Crossref | Medline30. Harada, K, Toyooka, S, Maitra, A, et al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines. Oncogene. 2002; 21(27):4345–4349.
Google Scholar | Crossref | Medline31. De Fraipont, F, Levallet, G, Creveuil, C, et al. An apoptosis methylation prognostic signature for early lung cancer in the IFCT-0002 trial. Clin Cancer Res. 2012; 18(10):2976–2986.
Google Scholar | Crossref | Medline32. Fendri, A, Masmoudi, A, Khabir, A, et al. Inactivation of RASSF1A, RARβ2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther. 2009; 8(5):444–451.
Google Scholar | Crossref | Medline33. Zhang, HY, Rumilla, KM, Jin, L, et al. Association of DNA methylation and epigenetic inactivation of RASSF1A and beta-catenin with metastasis in small bowel carcinoid tumors. Endocrine. 2006; 30(3):299–306.
Google Scholar | Crossref | Medline34. Sinha, R, Hussain, S, Mehrotra, R, et al. Kras gene mutation and RASSF1A, FHIT and MGMT gene promoter hypermethylation: indicators of tumor staging and metastasis in adenocarcinomatous sporadic colorectal cancer in Indian population. PLoS One. 2013; 8(4):1–8.
Google Scholar | Crossref35. García-Gutiérrez, L, McKenna, S, Kolch, W, Matallanas, D. RASSF1A tumour suppressor: target the network for effective cancer therapy. Cancers (Basel). 2020; 12(1):1–22.
Google Scholar | Crossref36. Bin, Y, Ding, Y, Xiao, W, Liao, A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta. 2020; 504(September 2019):98–108.
Google Scholar | Crossref | Medline37. Grawenda, AM, O’Neill, E. Clinical utility of RASSF1A methylation in human malignancies. Br J Cancer. 2015; 113(3):372–381.
Google Scholar | Crossref | Medline38. Simon, JA, Lange, CA. Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res—Fundam Mol Mech Mutagen. 2008; 647(1–2):21–29.
Google Scholar | Crossref | Medline | ISI39. Tsang, DPF, Cheng, ASL. Epigenetic regulation of signaling pathways in cancer: role of the histone methyltransferase EZH2. J Gastroenterol Hepatol. 2011; 26(1):19–27.
Google Scholar | Crossref | Medline40. Robinson, G, Parker, M, Kranenburg, TA, et al. Novel mutations target distinct subgroups of medulloblastoma. Nature. 2012; 488(7409):43–48.
Google Scholar | Crossref | Medline | ISI41. Alimova, I, Venkataraman, S, Harris, P, et al. Targeting the enhancer of zeste homologue 2 in medulloblastoma. Int J Cancer. 2012; 131(8):1800–1809.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif