Central and Peripheral Clock Control of Circadian Feeding Rhythms

Agrawal, N, Delanoue, R, Mauri, A, Basco, D, Pasco, M, Thorens, B, Léopold, P (2016) The Drosophila TNF Eiger is an Adipokine that acts on insulin-producing cells to mediate nutrient response. Cell Metab 23:675-684.
Google Scholar | Crossref | Medline Arrese, EL, Soulages, JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207-225.
Google Scholar | Crossref | Medline | ISI Asahina, K, Watanabe, K, Duistermars, BJ, Hoopfer, E, Gonzalez, CR, Eyjolfsdottir, EA, Perona, P, Anderson, DJ (2014) Tachykinin-expressing neurons control male-specific aggressive arousal in Drosophila. Cell 156:221-235.
Google Scholar | Crossref | Medline Barber, AF, Erion, R, Holmes, TC, Sehgal, A (2016) Circadian and feeding cues integrate to drive rhythms of physiology in Drosophila insulin-producing cells. Genes Dev 30:2596-2606.
Google Scholar | Crossref | Medline Barber, AF, Fong, SY, Kolesnik, A, Fetchko, M, Sehgal, A (2021) Drosophila clock cells use multiple mechanisms to transmit time-of-day signals in the brain. Proc Natl Acad Sci U S A 118:e2019826118.
Google Scholar | Crossref | Medline Bass, J, Takahashi, JS (2010) Circadian integration of metabolism and energetics. Science 330:1349-1354.
Google Scholar | Crossref | Medline | ISI Bohm, RA, Welch, WP, Goodnight, LK, Cox, LW, Henry, LG, Gunter, TC, Bao, H, Zhang, B (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci U S A 107:16378-16383.
Google Scholar | Crossref | Medline Bulthuis, N, Spontak, KR, Kleeman, B, Cavanaugh, DJ (2019) Neuronal activity in non-LNv clock cells is required to produce free-running rest: activity rhythms in Drosophila. J Biol Rhythms 34:249-271.
Google Scholar | SAGE Journals | ISI Damiola, F, Le Minh, N, Preitner, N, Kornmann, B, Fleury-Olela, F, Schibler, U (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14:2950-2961.
Google Scholar | Crossref | Medline | ISI Dauwalder, B, Tsujimoto, S, Moss, J, Mattox, W (2002) The Drosophila takeout gene is regulated by the somatic sex-determination pathway and affects male courtship behavior. Genes Dev 16:2879-2892.
Google Scholar | Crossref | Medline Delanoue, R, Meschi, E, Agrawal, N, Mauri, A, Tsatskis, Y, McNeill, H, Léopold, P (2016) Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor. Science 353:1553-1556.
Google Scholar | Crossref | Medline Delventhal, R, O’Connor, RM, Pantalia, MM, Ulgherait, M, Kim, HX, Basturk, MK, Canman, JC, Shirasu-Hiza, M (2019) Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. eLife 8:e48308.
Google Scholar | Crossref | Medline Dibner, C, Schibler, U, Albrecht, U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517-549.
Google Scholar | Crossref | Medline | ISI Dreyer, AP, Martin, MM, Fulgham, CV, Jabr, DA, Bai, L, Beshel, J, Cavanaugh, DJ (2019) A circadian output center controlling feeding: fasting rhythms in Drosophila. PLoS Genet 15:e1008478.
Google Scholar | Crossref | Medline Dubowy, C, Sehgal, A (2017) Circadian rhythms and sleep in Drosophila melanogaster. Genetics 205:1373-1397.
Google Scholar | Crossref | Medline | ISI Erion, R, King, AN, Wu, G, Hogenesch, JB, Sehgal, A (2016) Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. eLife 5:e13552.
Google Scholar | Crossref | Medline Friedman, JM (2019) Leptin and the endocrine control of energy balance. Nat Metab 1:754-764.
Google Scholar | Crossref | Medline Fropf, R, Zhang, J, Tanenhaus, AK, Fropf, WJ, Siefkes, E, Yin, JCP (2014) Time of day influences memory formation and dCREB2 proteins in Drosophila. Front Syst Neurosci 8:43.
Google Scholar | Crossref | Medline Fujii, S, Krishnan, P, Hardin, P, Amrein, H (2007) Nocturnal male sex drive in Drosophila. Curr Biol 17:244-251.
Google Scholar | Crossref | Medline | ISI Giebultowicz, JM, Stanewsky, R, Hall, JC, Hege, DM (2000) Transplanted Drosophila excretory tubules maintain circadian clock cycling out of phase with the host. Curr Biol 10:107-110.
Google Scholar | Crossref | Medline | ISI Goda, T, Hamada, FN (2019) Drosophila temperature preference rhythms: an innovative model to understand body temperature rhythms. Int J Mol Sci 20:1988.
Google Scholar | Crossref Gordon, MD, Scott, K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373-384.
Google Scholar | Crossref | Medline Hardeland, R (1972) Species differences in the diurnal rhythmicity of courtship behaviour within the melanogaster group of the genus Drosophila. Anim Behav 20:170-174.
Google Scholar | Crossref | Medline | ISI Harder, L, Oster, H (2020) The tissue clock network: driver and gatekeeper of circadian physiology: circadian rhythms are integrated outputs of central and peripheral tissue clocks interacting in a complex manner—from drivers to gatekeepers. Bioessays 42:e1900158.
Google Scholar | Crossref | Medline Hege, DM, Stanewsky, R, Hall, JC, Giebultowicz, JM (1997) Rhythmic expression of a PER-reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain-independent circadian clock. J Biol Rhythms 12:300-308.
Google Scholar | SAGE Journals | ISI Ito, C, Tomioka, K (2016) Heterogeneity of the peripheral circadian systems in Drosophila melanogaster: a review. Front Physiol 7:8.
Google Scholar | Crossref | Medline Ito, C, Goto, SG, Shiga, S, Tomioka, K, Numata, H (2008) Peripheral circadian clock for the cuticle deposition rhythm in Drosophila melanogaster. Proc Natl Acad Sci U S A 105:8446-8451.
Google Scholar | Crossref | Medline | ISI Ja, WW, Carvalho, GB, Mak, EM, de la Rosa, NN, Fang, AY, Liong, JC, Brummel, T, Benzer, S (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A 104:8253-8256.
Google Scholar | Crossref | Medline Kaneko, H, Head, LM, Ling, J, Tang, X, Liu, Y, Hardin, PE, Emery, P, Hamada, FN (2012) Circadian rhythm of temperature preference and its neural control in Drosophila. Curr Biol 22:1851-1857.
Google Scholar | Crossref | Medline | ISI Kim, D-H, Shin, M, Jung, S-H, Kim, Y-J, Jones, WD (2017) A fat-derived metabolite regulates a peptidergic feeding circuit in Drosophila. PLoS Biol 15:e2000532.
Google Scholar | Crossref | Medline King, AN, Barber, AF, Smith, AE, Dreyer, AP, Sitaraman, D, Nitabach, MN, Cavanaugh, DJ, Sehgal, A (2017) A peptidergic circuit links the circadian clock to locomotor activity. Curr Biol 27:1915-1927.
Google Scholar | Crossref | Medline Kornmann, B, Schaad, O, Bujard, H, Takahashi, JS, Schibler, U (2007) System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol 5:e34.
Google Scholar | Crossref | Medline | ISI Koronowski, KB, Kinouchi, K, Welz, P-S, Smith, JG, Zinna, VM, Shi, J, Samad, M, Chen, S, Magnan, CN, Kinchen, JM, et al. (2019) Defining the independence of the liver circadian clock. Cell 177:1448-1462.
Google Scholar | Crossref | Medline Krupp, JJ, Billeter, J-C, Wong, A, Choi, C, Nitabach, MN, Levine, JD (2013) Pigment-dispersing factor modulates pheromone production in clock cells that influence mating in Drosophila. Neuron 79:54-68.
Google Scholar | Crossref | Medline Krupp, JJ, Kent, C, Billeter, J-C, Azanchi, R, So, AK-C, Schonfeld, JA, Smith, BP, Lucas, C, Levine, JD (2008) Social experience modifies pheromone expression and mating behavior in male Drosophila melanogaster. Curr Biol 18:1373-1383.
Google Scholar | Crossref | Medline | ISI Lamia, KA, Storch, K-F, Weitz, CJ (2008) Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A 105:15172-15177.
Google Scholar | Crossref | Medline | ISI Lazareva, AA, Roman, G, Mattox, W, Hardin, PE, Dauwalder, B (2007) A role for the adult fat body in Drosophila male courtship behavior. PLoS Genet 3:e16.
Google Scholar | Crossref | Medline Li, S, Yu, X, Feng, Q (2019) Fat body biology in the last decade. Annu Rev Entomol 64:315-333.
Google Scholar | Crossref | Medline Lin, Y, Stormo, GD, Taghert, PH (2004) The neuropeptide pigment-dispersing factor coordinates pacemaker interactions in the Drosophila circadian system. J Neurosci 24:7951-7957.
Google Scholar | Crossref | Medline | ISI Litovchenko, M, Meireles-Filho, ACA, Frochaux, MV, Bevers, RPJ, Prunotto, A, Anduaga, AM, Hollis, B, Gardeux, V, Braman, VS, Russeil, JMC, et al. (2021) Extensive tissue-specific expression variation and novel regulators underlying circadian behavior. Sci Adv 7:eabc3781.
Google Scholar | Crossref | Medline Liu, X, Blaženović, I, Contreras, AJ, Pham, TM, Tabuloc, CA, Li, YH, Ji, J, Fiehn, O, Chiu, JC (2021) Hexosamine biosynthetic pathway integrates circadian and metabolic signals to regulate daily rhythms in protein O-linked N-acetylglucosaminylation. Nat Commun 12:4173.
Google Scholar | Crossref | Medline Longo, VD, Panda, S (2016) Fasting, circadian rhythms, and time-restricted feeding in healthy lifespan. Cell Metab 23:1048-1059.
Google Scholar | Crossref | Medline | ISI Lyons, LC, Roman, G (2009) Circadian modulation of short-term memory in Drosophila. Learn Mem 16:19-27.
Google Scholar | Crossref | Medline | ISI Makki, R, Cinnamon, E, Gould, AP (2014) The development and functions of oenocytes. Annu Rev Entomol 59:405-425.
Google Scholar | Crossref | Medline Martinek, S, Inonog, S, Manoukian, AS, Young, MW (2001) A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell 105:769-779.
Google Scholar | Crossref | Medline | ISI Muskus, MJ, Preuss, F, Fan, J-Y, Bjes, ES, Price, JL (2007) Drosophila DBT lacking protein kinase activity produces long-period and arrhythmic circadian behavioral and molecular rhythms. Mol Cell Biol 27:8049-8064.
Google Scholar | Crossref | Medline | ISI Panda, S, Antoch, MP, Miller, BH, Su, AI, Schook, AB, Straume, M, Schultz, PG, Kay, SA, Takahashi, JS, Hogenesch, JB (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307-

留言 (0)

沒有登入
gif