Remote Corticospinal Tract Degeneration After Cortical Stroke in Rats May Not Preclude Spontaneous Sensorimotor Recovery

1. Feigin, VL, Forouzanfar, MH, Krishnamurthi, R, et al. Global and regional burden of stroke during 1990-2010: findings from the Global burden of disease study 2010. Lancet. 2014;383(9913):245-255. doi:10.1016/S0140-6736(13)61953-4.
Google Scholar | Crossref | Medline | ISI2. Sousa, RM, Ferri, CP, Acosta, D, et al. Contribution of chronic diseases to disability in elderly people in countries with low and middle incomes: a 10/66 Dementia research group population-based survey. Lancet. 2009;374(9704):1821-1830. doi:10.1016/s0140-6736(09)61829-8.
Google Scholar | Crossref | Medline | ISI3. Krakauer, J, Marshall, R. The proportional recovery rule for stroke revisited. Ann Neurol. 2015;78(6):845-847. doi:10.1109/ISCAS.2011.5937535.
Google Scholar | Crossref | Medline4. Jeffers, MS, Karthikeyan, S, Corbett, D. Does stroke rehabilitation really matter? Part A: proportional stroke recovery in the rat. Neurorehabil Neural Repair. 2018;32(1):3-6. doi:10.1177/1545968317751210.
Google Scholar | SAGE Journals | ISI5. Hope, TMH, Friston, K, Price, CJ, Leff, AP, Rotshtein, P, Bowman, H. Recovery after stroke: not so proportional after all? Brain. 2019;142(1):15-22. doi:10.1093/brain/awy302.
Google Scholar | Crossref | Medline6. Kundert, R, Goldsmith, J, Veerbeek, JM, Krakauer, JW, Luft, AR. What the proportional recovery rule is (and is not): methodological and statistical considerations. Neurorehabil Neural Repair. 2019;33(11):876-887. doi:10.1177/1545968319872996.
Google Scholar | SAGE Journals | ISI7. Grefkes, C, Fink, GR. Reorganization of cerebral networks after stroke: new insights from neuroimaging with connectivity approaches. Brain. 2011;134(5):1264-1276. doi:10.1093/brain/awr033.
Google Scholar | Crossref | Medline8. Cramer, SC . Repairing the human brain after stroke: I. mechanisms of spontaneous recovery. Ann Neurol. 2008;63(3):272-287. doi:10.1002/ana.21393.
Google Scholar | Crossref | Medline9. Jiang, L, Xu, H, Yu, C, Jiang, L, Xu, H, Yu, C. Brain connectivity plasticity in the motor network after ischemic stroke. Neural Plast. 2013;2013:1-11. doi:10.1155/2013/924192.
Google Scholar | Crossref10. Jones, TA . Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18(5):267-280. doi:10.1038/nrn.2017.26.
Google Scholar | Crossref | Medline11. Murphy, TH, Corbett, D. Plasticity during stroke recovery: from synapse to behaviour. Nat Rev Neurosci. 2009;10(12):861-872. doi:10.1038/nrn2735.
Google Scholar | Crossref | Medline12. Rehme, AK, Grefkes, C. Cerebral network disorders after stroke: evidence from imaging-based connectivity analyses of active and resting brain states in humans. J Physiol. 2013;591(1):17-31. doi:10.1113/jphysiol.2012.243469.
Google Scholar | Crossref | Medline13. Carter, AR, Shulman, GL, Corbetta, M. Why use a connectivity-based approach to study stroke and recovery of function? Neuroimage. 2012;62(4):2271-2280. doi:10.1016/j.neuroimage.2012.02.070.
Google Scholar | Crossref | Medline14. Crofts, JJ, Higham, DJ, Bosnell, R, et al. Network analysis detects changes in the contralesional hemisphere following stroke. Neuroimage. 2011;54(1):161-169. doi:10.1016/j.neuroimage.2010.08.032.
Google Scholar | Crossref | Medline15. van Meer, MPA, van der Marel, K, Wang, K, et al. Recovery of sensorimotor function after experimental stroke correlates with restoration of resting-state interhemispheric functional connectivity. J Neurosci. 2010;30(11):3964-3972. doi:10.1523/JNEUROSCI.5709-09.2010.
Google Scholar | Crossref | Medline | ISI16. Jbabdi, S, Johansen-Berg, H. Tractography: where do we go from here? Brain Connect. 2011;1(3):169-183. doi:10.1089/brain.2011.0033.
Google Scholar | Crossref | Medline17. Basser, PJ, Pajevic, S, Pierpaoli, C, Duda, J, Aldroubi, A. In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44:625-632.
Google Scholar | Crossref | Medline | ISI18. Lindberg, PG, Skejø, PHB, Rounis, E, et al. Wallerian degeneration of the corticofugal tracts in chronic stroke: a pilot study relating diffusion tensor imaging, transcranial magnetic stimulation, and hand function. Neurorehabil Neural Repair. 2007;21(6):551-560. doi:10.1177/1545968307301886.
Google Scholar | SAGE Journals | ISI19. Lindenberg, R, Zhu, LL, Rüber, T, Schlaug, G. Predicting functional motor potential in chronic stroke patients using diffusion tensor imaging. Hum Brain Mapp. 2012;33(5):1040-1051. doi:10.1002/hbm.21266.
Google Scholar | Crossref | Medline20. Schaechter, JD, Fricker, ZP, Perdue, KL, et al. Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients. Hum Brain Mapp. 2009;30(11):3461-3474. doi:10.1002/hbm.20770.
Google Scholar | Crossref | Medline21. Lindenberg, R, Renga, V, Zhu, LL, Betzler, F, Alsop, D, Schlaug, G. Structural integrity of corticospinal motor fibers predicts motor impairment in chronic stroke. Neurology. 2010;74(4):280-287.
Google Scholar | Crossref | Medline22. van Meer, MPA, Otte, WM, van der Marel, K, et al. Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. J Neurosci. 2012;32(13):4495-4507. doi:10.1523/JNEUROSCI.3662-11.2012.
Google Scholar | Crossref | Medline23. Carter, AR, Astafiev, SV, Lang, CE, et al. Resting inter-hemispheric fMRI connectivity predicts performance after stroke. Ann Neurol. 2010;67(3):365-375. doi:10.1002/ana.21905.
Google Scholar | Crossref | Medline | ISI24. Grefkes, C, Fink, GR. Connectivity-based approaches in stroke and recovery of function. Lancet Neurol. 2014;13(2):206-216. doi:10.1016/S1474-4422(13)70264-3.
Google Scholar | Crossref | Medline25. van Meer, MP, van der Marel, K, Otte, WM, Berkelbach van der Sprenkel, JW, Dijkhuizen, RM. Correspondence between altered functional and structural connectivity in the contralesional sensorimotor cortex after unilateral stroke in rats: a combined resting-state functional MRI and manganese-enhanced MRI study. J Cerebr Blood Flow Metabol. 2010;30(10):1707-1711. doi:10.1038/jcbfm.2010.124.
Google Scholar | SAGE Journals | ISI26. Jenkinson, M, Beckmann, CF, Behrens, TEJ, Woolrich, MW, Smith, SM. FSL. Neuroimage. 2012;62(2):782-790. doi:10.1016/j.neuroimage.2011.09.015.
Google Scholar | Crossref | Medline | ISI27. Smith, SM . Fast robust automated brain extraction. Hum Brain Mapp. 2002;17(3):143-155. doi:10.1002/hbm.10062.
Google Scholar | Crossref | Medline | ISI28. Jenkinson, M, Bannister, P, Brady, M, Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825-841. doi:10.1016/S1053-8119(02)91132-8.
Google Scholar | Crossref | Medline | ISI29. Jenkinson, M, Smith, S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143-156. doi:10.1016/S1361-8415(01)00036-6.
Google Scholar | Crossref | Medline | ISI30. Andersson, JLR, Jenkinson, M, Smith, S. Non-Linear Registration. Aka Spatial Normalisation. FMRIB Technical Report TR07JA2.; 2007.
Google Scholar31. Tournier, JD, Calamante, F, Connelly, A. MRtrix: diffusion tractography in crossing fiber regions. Int J Imag Syst Technol. 2012;22(1):53-66. doi:10.1002/ima.22005.
Google Scholar | Crossref32. Paxinos, G, Watson, W. The Rat Brain in Stereotaxic Coordinates. 5th ed. Amsterdam: Elsevier Academic Press; 2005.
Google Scholar33. Majka, P, Kublik, E, Furga, G, Wójcik, DK. Common atlas format and 3D brain atlas reconstructor: Infrastructure for Constructing 3D brain atlases. Neuroinformatics. 2012;10(2):181-197. doi:10.1007/s12021-011-9138-6.
Google Scholar | Crossref | Medline34. Liu, NW, Ke, CC, Zhao, Y, et al. Evolutional characterization of photochemically induced stroke in rats: a multimodality imaging and molecular biological study. Transl Stroke Res. 2017;8(3):244-256. doi:10.1007/s12975-016-0512-4.
Google Scholar | Crossref | Medline35. Koh, CL, Tang, PF, Chen, HI, Hsu, YC, Hsieh, CL, Tseng, WYI. Impaired callosal motor fiber integrity and upper extremity motor impairment are associated with stroke lesion location. Neurorehabil Neural Repair. 2018;32(6-7):602-612. doi:10.1177/1545968318779730.
Google Scholar | SAGE Journals | ISI36. Figini, M, Zucca, I, Aquino, D, et al. In vivo DTI tractography of the rat brain: an atlas of the main tracts in Paxinos space with histological comparison. Magn Reson Imag. 2015;33(3):296-303. doi:10.1016/j.mri.2014.11.001.
Google Scholar | Crossref | Medline37. Smith, RE, Tournier, JD, Calamante, F, Connelly, A. The effects of SIFT on the reproducibility and biological accuracy of the structural connectome. Neuroimage. 2015;104:253-265. doi:10.1016/j.neuroimage.2014.10.004.
Google Scholar | Crossref | Medline38. Smith, RE, Tournier, JD, Calamante, F, Connelly, A. SIFT: spherical-deconvolution informed filtering of tractograms. Neuroimage. 2013;67:298-312. doi:10.1016/j.neuroimage.2012.11.049.
Google Scholar | Crossref | Medline39. Rüber, T, Schlaug, G, Lindenberg, R. Compensatory role of the cortico-rubro-spinal tract in motor recovery after stroke. Neurology. 2012;79:515-522. doi:P06.243-P0610.1212/wnl.78.1_meetingabstracts.p06.243.Meeting Abstracts 1
Google Scholar | Crossref | Medline40. Cheng, B, Schlemm, E, Schulz, R, et al. Altered topology of large-scale structural brain networks in chronic stroke. Brain Commun. 2019;1(1):fcz020. doi:10.1093/braincomms/fcz020.
Google Scholar | Crossref | Medline41. Tuor, UI, Morgunov, M, Sule, M, et al. Cellular correlates of longitudinal diffusion tensor imaging of axonal degeneration following hypoxic-ischemic cerebral infarction in neonatal rats. Neuroimage Clin. 2014;6:32-42. doi:10.1016/j.nicl.2014.08.003.
Google Scholar | Crossref | Medline42. Song, SK, Yoshino, J, Le, TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132-140. doi:10.1016/j.neuroimage.2005.01.028.
Google Scholar | Crossref | Medline | ISI43. Sun, SW, Liang, HF, Trinkaus, K, Cross, AH, Armstrong, RC, Song, SK. Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med. 2006;55(2):302-308. doi:10.1002/mrm.20774.
Google Scholar | Crossref | Medline | ISI44. Mengler, L, Khmelinskii, A, Diedenhofen, M, et al. Brain maturation of the adolescent rat cortex and striatum: changes in volume and myelination. Neuroimage. 2014;84:35-44. doi:10.1016/j.neuroimage.2013.08.034.
Google Scholar | Crossref

留言 (0)

沒有登入
gif