Molecular insights and clinical impacts of extracellular vesicles in cancer

Ratajczak J, Wysoczynski M, Hayek F, et al. Membrane-derived microvesicles: important and underappreciated mediators of cell-to-cell communication. Leukemia 2006;20:1487-95. DOI: https://doi.org/10.1038/sj.leu.2404296

Rechavi O, Goldstein I, Kloog Y. Intercellular exchange of proteins: The immune cell habit of sharing. FEBS Lett 2009;583:1792-9. DOI: https://doi.org/10.1016/j.febslet.2009.03.014

Mincheva‐Nilsson L, Baranov V. The role of placental exosomes in reproduction. Am J Reprod Immunol 2010;63:520-33. DOI: https://doi.org/10.1111/j.1600-0897.2010.00822.x

Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol 2009;19:43-51. DOI: https://doi.org/10.1016/j.tcb.2008.11.003

Vlassov AV, Magdaleno S, Setterquist R, Conrad R. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta BBA - Gen Subj 2012;1820:940-8. DOI: https://doi.org/10.1016/j.bbagen.2012.03.017

Théry C, Boussac M, Véron P, et al. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J Immunol. 2001;166:7309-18. DOI: https://doi.org/10.4049/jimmunol.166.12.7309

Mathivanan S, Simpson RJ. ExoCarta: A compendium of exosomal proteins and RNA. Proteomics 2009;9:4997-5000. DOI: https://doi.org/10.1002/pmic.200900351

Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem 1946;166:189-97. DOI: https://doi.org/10.1016/S0021-9258(17)34997-9

Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967;13:269-88. DOI: https://doi.org/10.1111/j.1365-2141.1967.tb08741.x

Johnstone RM, Adam M, Hammond JR, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987;262:9412-20. DOI: https://doi.org/10.1016/S0021-9258(18)48095-7

Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018;7:1535750. DOI: https://doi.org/10.1080/20013078.2018.1461450

Al-Nedawi K, Meehan B, Micallef J, et al. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 2008;10:619-24. DOI: https://doi.org/10.1038/ncb1725

Östman S, Taube M, Telemo E. Tolerosome-induced oral tolerance is MHC dependent. Immunology 2005;116:464-76. DOI: https://doi.org/10.1111/j.1365-2567.2005.02245.x

Wasmeier C, Hume AN, Bolasco G, Seabra MC. Melanosomes at a glance. J Cell Sci 2008;121:3995-9. DOI: https://doi.org/10.1242/jcs.040667

Stegmayr B, Ronquist G. Promotive effect on human sperm progressive motility by prostasomes. Urol Res 1982;10:253-7. DOI: https://doi.org/10.1007/BF00255932

Xu R, Rai A, Chen M, et al. Extracellular vesicles in cancer - implications for future improvements in cancer care. Nat Rev Clin Oncol 2018;15:617-38. DOI: https://doi.org/10.1038/s41571-018-0036-9

Zhang X, Yuan X, Shi H, et al. Exosomes in cancer: small particle, big player. J Hematol OncolJ Hematol Oncol 2015;8:83. DOI: https://doi.org/10.1186/s13045-015-0181-x

Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009;10:597-608. DOI: https://doi.org/10.1038/nrm2755

Zhuang G, Wu X, Jiang Z, et al. Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 2012;31:3513-23. DOI: https://doi.org/10.1038/emboj.2012.183

Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol 2016;36:301-12. DOI: https://doi.org/10.1007/s10571-016-0366-z

Buschow SI, Hoen ENMN-‘t, Niel GV, et al. MHC II in dendritic cells is targeted to lysosomes or t cell-induced exosomes via distinct multivesicular body pathways. Traffic 2009;10:1528-42. DOI: https://doi.org/10.1111/j.1600-0854.2009.00963.x

Wolfers J, Lozier A, Raposo G, et al. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 2001;7:297-303. DOI: https://doi.org/10.1038/85438

Beach A, Zhang H-G, Ratajczak MZ, Kakar SS. Exosomes: an overview of biogenesis, composition and role in ovarian cancer. J Ovarian Res 2014;7:14. DOI: https://doi.org/10.1186/1757-2215-7-14

Vader P, Breakefield XO, Wood MJA. Extracellular vesicles: emerging targets for cancer therapy. Trends Mol Med 2014;20:385-93. DOI: https://doi.org/10.1016/j.molmed.2014.03.002

Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteomics. 2010;73:1907-20. DOI: https://doi.org/10.1016/j.jprot.2010.06.006

Bobrie A, Colombo M, Raposo G, Théry C. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 2011;12:1659-68. DOI: https://doi.org/10.1111/j.1600-0854.2011.01225.x

Ostrowski M, Carmo NB, Krumeich S, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 2010;12:19-30. DOI: https://doi.org/10.1038/ncb2000

Baietti MF, Zhang Z, Mortier E, et al. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 2012;14:677-85. DOI: https://doi.org/10.1038/ncb2502

Hsu C, Morohashi Y, Yoshimura S, et al. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J Cell Biol 2010;189:223-32. DOI: https://doi.org/10.1083/jcb.200911018

Parolini I, Federici C, Raggi C, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J Biol Chem 2009;284:34211-22. DOI: https://doi.org/10.1074/jbc.M109.041152

Aatonen MT, Öhman T, Nyman TA, et al. Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 2014;3. DOI: https://doi.org/10.3402/jev.v3.24692

Fourcade O, Simon M-F, Viodé C, et al. Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 1995;80:919-27. DOI: https://doi.org/10.1016/0092-8674(95)90295-3

Müller I, Klocke A, Alex M, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 2003;17:1-20. DOI: https://doi.org/10.1096/fj.02-0574fje

Al-Nedawi K, Meehan B, Rak J. Microvesicles: messengers and mediators of tumor progression. Cell Cycle. 2009;8:2014-8. DOI: https://doi.org/10.4161/cc.8.13.8988

Lima LG, Chammas R, Monteiro RQ, et al. Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett 2009;283:168-75. DOI: https://doi.org/10.1016/j.canlet.2009.03.041

Larson MC, Karafin MS, Hillery CA, Hogg N. Phosphatidylethanolamine is progressively exposed on RBCs during storage. Transfus Med Oxf Engl 2017;27:136-41. DOI: https://doi.org/10.1111/tme.12382

Barteneva NS, Fasler-Kan E, Bernimoulin M, et al. Circulating microparticles: square the circle. BMC Cell Biol 2013;14:23. DOI: https://doi.org/10.1186/1471-2121-14-23

Connor DE, Exner T, Ma DDF, Joseph JE. The majority of circulating platelet-derived microparticles fail to bind annexin V, lack phospholipid-dependent procoagulant activity and demonstrate greater expression of glycoprotein Ib. Thromb Haemost 2010;103:1044-52. DOI: https://doi.org/10.1160/TH09-09-0644

Horstman LL, Jy W, Jimenez JJ, et al. New horizons in the analysis of circulating cell-derived microparticles. Keio J Med 2004;53:210-30. DOI: https://doi.org/10.2302/kjm.53.210

Al-Massarani G, Najjar F, Aljapawe A, Ikhtiar A. Evaluation of circulating microparticles in healthy medical workers occupationally exposed to ionizing radiation: A preliminary study. Int J Occup Med Environ Health 2018;31:783-93. DOI: https://doi.org/10.13075/ijomeh.1896.01106

Muralidharan-Chari V, Clancy JW, Sedgwick A, D’Souza-Schorey C. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci 2010;123:1603-11. DOI: https://doi.org/10.1242/jcs.064386

Muralidharan-Chari V, Clancy J, Plou C, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr Biol 2009;19:1875-85. DOI: https://doi.org/10.1016/j.cub.2009.09.059

Akers JC, Gonda D, Kim R, et al. Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 2013;113:1-11. DOI: https://doi.org/10.1007/s11060-013-1084-8

Rashmi R, Shikha J, Kirti C, et al. Role of extracellular vesicles in glioma progression: deciphering cellular biological processes to clinical applications. Curr Top Med Chem 2021;21:696-704. DOI: https://doi.org/10.2174/1568026620666201207100139

D’Souza-Schorey C, Chavrier P. ARF proteins: roles in membrane traffic and beyond. Nat Rev Mol Cell Biol 2006;7:347-58. DOI: https://doi.org/10.1038/nrm1910

Kerr JFR, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer 1972;26:239-57. DOI: https://doi.org/10.1038/bjc.1972.33

Kakarla R, Hur J, Kim YJ, et al. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 2020;52:1-6. DOI: https://doi.org/10.1038/s12276-019-0362-8

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007;35:495-516. DOI: https://doi.org/10.1080/01926230701320337

Mariño G, Kroemer G. Mechanisms of apoptotic phosphatidylserine exposure. Cell Res 2013;23:1247-8. DOI: https://doi.org/10.1038/cr.2013.115

Li M, Liao L, Tian W. Extracellular vesicles derived from apoptotic cells: an essential link between death and regeneration. Front Cell Dev Biol 2020;8:1063. DOI: https://doi.org/10.3389/fcell.2020.573511

Caruso S, Poon IKH. Apoptotic cell-derived extracellular vesicles: more than just debris. Front Immunol 2018;9:1486. DOI: https://doi.org/10.3389/fimmu.2018.01486

Meehan B, Rak J, Di Vizio D. Oncosomes - large and small: what are they, where they came from? J Extracell Vesicles 2016;5:33109. DOI: https://doi.org/10.3402/jev.v5.33109

Vizio DD, Kim J, Hager MH, et al. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res 2009;69:5601-9. DOI: https://doi.org/10.1158/0008-5472.CAN-08-3860

Minciacchi VR, Freeman MR, Di Vizio D. Extracellular vesicles in cancer: exosomes, microvesicles and the emerging role of large oncosomes. Semin Cell Dev Biol 2015;40:41-51. DOI: https://doi.org/10.1016/j.semcdb.2015.02.010

Jaiswal R, Sedger LM. Intercellular vesicular transfer by exosomes, microparticles and oncosomes - implications for cancer biology and treatments. Front Oncol 2019;9. DOI: https://doi.org/10.3389/fonc.2019.00125

Di Vizio D, Morello M, Dudley AC, et al. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am J Pathol 2012;181:1573-84. DOI: https://doi.org/10.1016/j.ajpath.2012.07.030

Ciardiello C, Leone A, Lanuti P, et al. Large oncosomes overexpressing integrin alpha-V promote prostate cancer adhesion and invasion via AKT activation. J Exp Clin Cancer Res 2019;38:317. DOI: https://doi.org/10.1186/s13046-019-1317-6

Morello M, Minciacchi V, Candia P de, et al. Large oncosomes mediate intercellular transfer of functional microRNA. Cell Cycle 2013;12:3526-36. DOI: https://doi.org/10.4161/cc.26539

Bertolini I, Terrasi A, Martelli C, et al. A GBM-like V-ATPase signature directs cell-cell tumor signaling and reprogramming via large oncosomes. EBio Med 2019;41:225-35. DOI: https://doi.org/10.1016/j.ebiom.2019.01.051

Słomka A, Urban SK, Lukacs-Kornek V, et al. Large extracellular vesicles: have we found the holy grail of inflammation? Front Immunol 2018;9:2723. DOI: https://doi.org/10.3389/fimmu.2018.02723

Pezzicoli G, Tucci M, Lovero D, et al. Large extracellular vesicles - a new frontier of liquid biopsy in oncology. Int J Mol Sci 2020;21:6543. DOI: https://doi.org/10.3390/ijms21186543

Ogorevc E, Kralj-Iglic V, Veranic P. The role of extracellular vesicles in phenotypic cancer transformation. Radiol Oncol 2013;47:197-205. DOI: https://doi.org/10.2478/raon-2013-0037

Melo SA, Sugimoto H, O’Connell JT, et al. Cancer exosomes perform cell-independent microRNA biogenesis and promote tumorigenesis. Cancer Cell 2014;26:707-21. DOI: https://doi.org/10.1016/j.ccell.2014.09.005

Elmageed ZYA, Yang Y, Thomas R, et al. Neoplastic reprogramming of patient-derived adipose stem cells by prostate cancer cell-associated exosomes. Stem Cells 2014;32:983-97. DOI: https://doi.org/10.1002/stem.1619

Higginbotham JN, Demory Beckler M, Gephart JD, et al. Amphiregulin exosomes increase cancer cell invasion. Curr Biol 2011;21:779-86. DOI: https://doi.org/10.1016/j.cub.2011.03.043

Graner MW, Alzate O, Dechkovskaia AM, et al. Proteomic and immunologic analyses of brain tumor exosomes. FASEB J 2009;23:1541-57. DOI: https://doi.org/10.1096/fj.08-122184

Adamczyk KA, Klein-Scory S, Tehrani MM, et al. Characterization of soluble and exosomal forms of the EGFR released from pancreatic cancer cells. Life Sci 2011;89:304-12. DOI: https://doi.org/10.1016/j.lfs.2011.06.020

McCready J, Sims JD, Chan D, Jay DG. Secretion of extracellular hsp90α via exosomes increases cancer cell motility: a role for plasminogen activation. BMC Cancer 2010;10:294. DOI: https://doi.org/10.1186/1471-2407-10-294

Kosaka N, Iguchi H, Hagiwara K, et al. Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. J Biol Chem 2013;288:10849-59. DOI: https://doi.org/10.1074/jbc.M112.446831

Clapé C, Fritz V, Henriquet C, et al. Mir-143 interferes with ERK5 signaling, and abrogates prostate cancer progression in mice. PLoS One 2009;4:e7542. DOI: https://doi.org/10.1371/journal.pone.0007542

Chen M, Xu R, Ji H, et al. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci Rep 2016;6:38397. DOI: https://doi.org/10.1038/srep38397

Gerbasi FR, Bottoms S, Farag A, Mammen EF. Changes in hemostasis activity during delivery and the immediate postpartum period. Am J Obstet Gynecol 1990;162:1158-63. DOI: https://doi.org/10.1016/0002-9378(90)90006-S

Li T, Xie J, Shen C, et al. Amplification of long noncoding RNA ZFAS1 promotes metastasis in hepatocellular carcinoma. Cancer Res 2015;75:3181-91. DOI: https://doi.org/10.1158/0008-5472.CAN-14-3721

Thorenoor N, Faltejskova-Vychytilova P, Hombach S, et al. Long non-coding RNA ZFAS1 interacts with CDK1 and is involved in p53-dependent cell cycle control and apoptosis in colorectal cancer. Oncotarget 2015;7:622-37. DOI: https://doi.org/10.18632/oncotarget.5807

Kogure T, Yan IK, Lin W-L, Patel T. Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes Cancer 2013;4:261-72. DOI: https://doi.org/10.1177/1947601913499020

Gezer U, Özgür E, Cetinkaya M, et al. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol Int 2014;38:1076-9. DOI: https://doi.org/10.1002/cbin.10301

Sun R, Qin C, Jiang B, et al. Down-regulation of MALAT1 inhibits cervical cancer cell invasion and metastasis by inhibition of epithelial-mesenchymal transition. Mol Biosyst 2016;12:952-62. DOI: https://doi.org/10.1039/C5MB00685F

Lucchetti D, Ricciardi Tenore C, Colella F, Sgambato A. Extracellular vesicles and cancer: a focus on metabolism, cytokines, and immunity. Cancers 2020;12:171. DOI: https://doi.org/10.3390/cancers12010171

Kobayashi Y, Banno K, Kunitomi H, et al. Warburg effect in gynecologic cancers. J Obstet Gynaecol Res 2019;45:542-8. DOI: https://doi.org/10.1111/jog.13867

Robado de Lope L, Alcíbar OL, Amor López A, et al. Tumour-adipose tissue crosstalk: fuelling tumour metastasis by extracellular vesicles. Philos Trans R Soc B Biol Sci 2018;373:20160485. DOI: https://doi.org/10.1098/rstb.2016.0485

Kim J, Afshari A, Sengupta R, et al. Replication study: Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. eLife 2018;7:e39944. DOI: https://doi.org/10.7554/eLife.39944

Kosaka N, Iguchi H, Yoshioka Y, et al. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J Biol Chem 2010;285:17442-52. DOI: https://doi.org/10.1074/jbc.M110.107821

Trajkovic K, Hsu C, Chiantia S, et al. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 2008;319:1244-7. DOI: https://doi.org/10.1126/science.1153124

Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008;283:15878-83. DOI: https://doi.org/10.1074/jbc.M800731200

Kim JW, Wieckowski E, Taylor DD, et al. Fas ligand-positive membranous vesicles isolated from sera of patients with oral cancer induce apoptosis of activated T lymphocytes. Clin Cancer Res Off J Am Assoc Cancer Res 2005;11:1010-20.

Katsuda T, Kosaka N, Ochiya T. The roles of extracellular vesicles in cancer biology: Toward the development of novel cancer biomarkers. Proteomics 2014;14:412-25. DOI: https://doi.org/10.1002/pmic.201300389

Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 2013;200:373-83. DOI: https://doi.org/10.1083/jcb.201211138

Khan S, Jutzy JMS, Valenzuela MMA, et al. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One 2012;7:e46737. DOI: https://doi.org/10.1371/journal.pone.0046737

Melo SA, Luecke LB, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature 2015;523:177-82. DOI: https://doi.org/10.1038/nature14581

Rabinowits G, Gerçel-Taylor C, Day JM, et al. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 2009;10:42-6. DOI: https://doi.org/10.3816/CLC.2009.n.006

Weber DG, Johnen G, Casjens S, et al. Evaluation of long noncoding RNA MALAT1 as a candidate blood-based biomarker for the diagnosis of non-small cell lung cancer. BMC Res Notes 2013;6:518. DOI: https://doi.org/10.1186/1756-0500-6-518

Lu Q, Zhang J, Allison R, et al. Identification of extracellular δ-catenin accumulation for prostate cancer detection. Prostate 2009;69:411-8. DOI: https://doi.org/10.1002/pros.20902

Armstrong DA, Green BB, Seigne JD, et al. MicroRNA molecular profiling from matched tumor and bio-fluids in bladder cancer. Mol Cancer 2015;14:194. DOI: https://doi.org/10.1186/s12943-015-0466-2

Shao Y, Ye M, Jiang X, et al. Gastric juice long noncoding RNA used as a tumor marker for screening gastric cancer. Cancer 2014;120:3320-8. DOI: https://doi.org/10.1002/cncr.28882

Eichelser C, Stückrath I, Müller V, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget 2014;5:9650-63. DOI: https://doi.org/10.18632/oncotarget.2520

Zhang J, Liu S-C, Luo X-H, et al. Exosomal long noncoding RNAs are differentially expressed in the cervicovaginal lavage samples of cervical cancer patients. J Clin Lab Anal 2016;30:1116-21. DOI: https://doi.org/10.1002/jcla.21990

McKiernan J, Noerholm M, Tadigotla V, et al. A urine-based Exosomal gene expression test stratifies risk of high-grade prostate Cancer in men with prior negative prostate biopsy undergoing repeat biopsy. BMC Urol 2020;20:138. DOI: https://doi.org/10.1186/s12894-020-00712-4

McKiernan J, Donovan MJ, Margolis E, et al. A prospective adaptive utility trial to validate performance of a novel urine exosome gene expression assay to predict high-grade prostate cancer in patients with prostate-specific antigen 2-10 ng/mL at initial biopsy. Eur Urol 2018;74:731-8. DOI: https://doi.org/10.1016/j.eururo.2018.08.019

Castellanos-Rizaldos E, Grimm DG, Tadigotla V, et al. Exosome-based detection of EGFR T790M in plasma from non-small cell lung cancer patients. Clin Cancer Res 2018;24:2944-50. DOI: https://doi.org/10.1158/1078-0432.CCR-17-3369

Osti D, Bene MD, Rappa G, et al. Clinical significance of extracellular vesicles in plasma from glioblastoma patients. Clin Cancer Res 2019;25:266-76. DOI: https://doi.org/10.1158/1078-0432.CCR-18-1941

König L, Kasimir-Bauer S, Bittner A-K, et al. Elevated levels of extracellular vesicles are associated with therapy failure and disease progression in breast cancer patients undergoing neoadjuvant chemotherapy. OncoImmunology 2018;7:e1376153. DOI: https://doi.org/10.1080/2162402X.2017.1376153

Nakanishi T, Ross DD. Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 2012;31:73-99. DOI: https://doi.org/10.5732/cjc.011.10320

Chen Y, Wang L, Zhu Y, et al. Breast cancer resistance protein (BCRP)-containing circulating microvesicles contribute to chemoresistance in breast cancer. Oncol Lett 2015;10:3742-8. DOI: https://doi.org/10.3892/ol.2015.3806

Kassam Z, Burgers K, Walsh JC, et al. A prospective feasibility study evaluating the role of multimodality imaging and liquid biopsy for response assessment in locally advanced rectal carcinoma. Abdom Radiol 2019;44:3641-51. DOI: https://doi.org/10.1007/s00261-019-02135-8

Malla B, Aebersold DM, Dal Pra A. Protocol for serum exosomal miRNAs analysis in prostate cancer patients treated with radiotherapy. J Transl Med 2018;16:223. DOI: https://doi.org/10.1186/s12967-018-1592-6

Yu Q, Li P, Weng M, et al. Nano-vesicles are a potential tool to monitor therapeutic efficacy of carbon ion radiotherapy in prostate cancer. J Biomed Nanotechnol 2018;14:168-78. DOI: https://doi.org/10.1166/jbn.2018.2503

Guo X, Lv X, Ru Y, et al. Circulating exosomal gastric cancer-associated long noncoding rna1 as a biomarker for early detection and monitoring progression of gastric cancer: a multiphase study. JAMA Surg 2020;155:572. DOI: https://doi.org/10.1001/jamasurg.2020.1133

Kim DH, Kim H, Choi YJ, et al. Exosomal PD-L1 promotes tumor growth through immune escape in non-small cell lung cancer. Exp Mol Med 2019;51:1-13. DOI: https://doi.org/10.1038/s12276-019-0295-2

Cordonnier M, Nardin C, Chanteloup G, et al. Tracking the evolution of circulating exosomal-PD-L1 to monitor melanoma patients. J Extracell Vesicles 2020;9:1710899. DOI: https://doi.org/10.1080/20013078.2019.1710899

Theodoraki M-N, Yerneni S, Gooding WE, et al. Circulating exosomes measure responses to therapy in head and neck cancer patients treated with cetuximab, ipilimumab, and IMRT. Oncoimmunology 2019;8. DOI: https://doi.org/10.1080/2162402X.2019.1593805

Perez D de M, Russo A, Gunasekaran M, et al. 31 Dynamic change of PD-L1 expression on extracellular vesicles predicts response to immune-checkpoint inhibitors in non-small cell lung cancer patients. J Immunother Cancer 2020;8:A30. DOI: https://doi.org/10.1136/jitc-2020-SITC2020.0031

Wang J, Wuethrich A, Sina AAI, et al. Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma. Sci Adv 2020;6:eaax3223. DOI: https://doi.org/10.1126/sciadv.aax3223

Jin D, Peng X-X, Qin Y, et al. Multivalence-actuated DNA nanomachines enable bicolor exosomal phenotyping and PD-L1-guided therapy monitoring. Anal Chem 2020;92:9877-86. DOI: https://doi.org/10.1021/acs.analchem.0c01387

Ostenfeld MS, Jeppesen DK, Laurberg JR, et al. Cellular disposal of miR23b by RAB27-dependent exosome release is linked to acquisition of metastatic properties. Cancer Res 2014;74:5758-71. DOI: https://doi.org/10.1158/0008-5472.CAN-13-3512

Wang T, Gilkes DM, Takano N, et al. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc Natl Acad Sci USA 2014;111:E3234-42. DOI: https://doi.org/10.1073/pnas.1410041111

Pitt JM, Charrier M, Viaud S, et al. Dendritic cell-derived exosomes as immunotherapies in the fight against cancer. J Immunol 2014;193:1006-11. DOI: https://doi.org/10.4049/jimmunol.1400703

Tan A, Peña HDL, Seifalian AM. The application of exosomes as a nanoscale cancer vaccine. Int J Nanomedicine 2010;5:889-900. DOI: https://doi.org/10.2147/IJN.S13402

Alvarez-Erviti L, Seow Y, Yin H, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 2011;29:341-5. DOI: https://doi.org/10.1038/nbt.1807

van den Boorn JG, Daßler J, Coch C, et al. Exosomes as nucleic acid nanocarriers. Adv Drug Deliv Rev 2013;65:331-5. DOI: https://doi.org/10.1016/j.addr.2012.06.011

Jr W. The epidermal growth factor receptor and its inhibition in cancer therapy. Pharmacol Ther 1999;82:241-50. DOI: https://doi.org/10.1016/S0163-7258(98)00045-X

Ohno S, Takanashi M, Sudo K, et al. Systemically injected exosomes targeted to EGFR deliver antitumor microrna to breast cancer cells. Mol Ther 2013;21:185-91. DOI: https://doi.org/10.1038/mt.2012.180

Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro. Cell Commun Signal 2013;11:88. DOI: https://doi.org/10.1186/1478-811X-11-88

Ravindran J, Prasad S, Aggarwal BB. Curcumin and cancer cells: how many ways can curry kill tumor cells selectively? AAPS J 2009;11:495-510. DOI: https://doi.org/10.1208/s12248-009-9128-x

Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 2009;41:40-59. DOI: https://doi.org/10.1016/j.biocel.2008.06.010

Anand P, Sundaram C, Jhurani S, et al. Curcumin and cancer: An ‘‘old-age” disease with an ‘‘age-old” solution. Cancer Lett 2008;32. DOI: https://doi.org/10.1016/j.canlet.2008.03.025

Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm 2007;4:807-18. DOI: https://doi.org/10.1021/mp700113r

Sun D, Zhuang X, Xiang X, et al. A novel nanoparticle drug delivery system: the anti-inflammatory activity of curcumin is enhanced when encapsulated in exosomes. Mol Ther 2010;18:1606-14. DOI: https://doi.org/10.1038/mt.2010.105

Tian Y, Li S, Song J, et al. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014;35:2383-90. DOI: https://doi.org/10.1016/j.biomaterials.2013.11.083

留言 (0)

沒有登入
gif