Anakinra and canakinumab for patients with R92Q-associated autoinflammatory syndrome: a multicenter observational study from the AIDA Network

1. Lachmann, HJ, Papa, R, Gerhold, K, et al. The phenotype of TNF receptor-associated autoinflammatory syndrome (TRAPS) at presentation: a series of 158 cases from the Eurofever/EUROTRAPS international registry. Ann Rheum Dis 2014; 73: 2160–2167.
Google Scholar | Crossref | Medline2. Rigante, D. A systematic approach to autoinflammatory syndromes: a spelling booklet for the beginner. Expert Rev Clin Immunol 2017; 13: 571–597.
Google Scholar | Crossref3. Dodé, C, André, M, Bienvenu, T, et al. The enlarging clinical, genetic, and population spectrum of tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 2002; 46: 2181–2188.
Google Scholar | Crossref | Medline4. McDermott, MF, Aksentijevich, I, Galon, J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes. Cell 1999; 97: 133–144.
Google Scholar | Crossref | Medline | ISI5. Ruiz-Ortiz, E, Iglesias, E, Soriano, A, et al. Disease phenotype and outcome depending on the age at disease onset in patients carrying the R92Q low-penetrance variant in TNFRSF1A gene. Front Immunol 2017; 278: 299.
Google Scholar6. Cantarini, L, Lucherini, OM, Cimaz, R, et al. Idiopathic recurrent pericarditis refractory to colchicine treatment can reveal tumor necrosis factor receptor-associated periodic syndrome. Int J Immunopathol Pharmacol 2009; 22: 1051–1058.
Google Scholar | SAGE Journals | ISI7. Cantarini, L, Lucherini, OM, Baldari, CT, et al. Familial clustering of recurrent pericarditis may disclose tumour necrosis factor receptor-associated periodic syndrome. Clin Exp Rheumatol 2010; 28: 405–407.
Google Scholar | Medline | ISI8. Ravet, N, Rouaghe, S, Dodé, C, et al. Clinical significance of P46L and R92Q substitutions in the tumour necrosis factor superfamily 1A gene. Ann Rheum Dis 2006; 65: 1158–1162.
Google Scholar | Crossref | Medline | ISI9. Aganna, E, Hammond, L, Hawkins, PN, et al. Heterogeneity among patients with tumor necrosis factor receptor-associated periodic syndrome phenotypes. Arthritis Rheum 2003; 48: 2632–2644.
Google Scholar | Crossref | Medline10. Aksentijevich, I, Galon, J, Soares, M, et al. The tumor-necrosis-factor receptor-associated periodic syndrome: new mutations in TNFRSF1A, ancestral origins, genotype-phenotype studies, and evidence for further genetic heterogeneity of periodic fevers. Am J Hum Genet 2001; 69: 301–314.
Google Scholar | Crossref | Medline | ISI11. Grandemange, S, Cabasson, S, Sarrabay, G, et al. Clinical dose effect and functional consequences of R92Q in two families presenting with a TRAPS/PFAPA-like phenotype. Mol Genet Genomic Med 2017; 5: 110–116.
Google Scholar | Crossref | Medline12. Aganna, E, Hawkins, PN, Ozen, S, et al. Allelic variants in genes associated with hereditary periodic fever syndromes as susceptibility factors for reactive systemic AA amyloidosis. Genes Immun 2004; 5: 289–293.
Google Scholar | Crossref | Medline13. Amoura, Z, Dodé, C, Hue, S, et al. Association of the R92Q TNFRSF1A mutation and extracranial deep vein thrombosis in patients with Behçet’s disease. Arthritis Rheum 2005; 52: 608–611.
Google Scholar | Crossref | Medline14. Cantarini, L, Lucherini, OM, Vitale, A, et al. Expanding spectrum of TNFRSF1A gene mutations among patients with idiopathic recurrent acute pericarditis. Intern Med J 2013; 43: 725–727.
Google Scholar | Crossref | Medline15. Goris, A, Fockaert, N, Cosemans, L, et al. TNFRSF1A coding variants in multiple sclerosis. J Neuroimmunol 2011; 235: 110–112.
Google Scholar | Crossref | Medline | ISI16. Van Gijn, ME, Ceccherini, I, Shinar, Y, et al. New workflow for classification of genetic variants’ pathogenicity applied to hereditary recurrent fevers by the International Study Group for Systemic Autoinflammatory Diseases (INSAID). J Med Genet 2018; 55: 530–537.
Google Scholar | Crossref | Medline17. Bachetti, T, Chiesa, S, Castagnola, P, et al. Autophagy contributes to inflammation in patients with TNFR-associated periodic syndrome (TRAPS). Ann Rheum Dis 2013; 72: 1044–1052.
Google Scholar | Crossref | Medline18. Lobito, AA, Kimberley, FC, Muppidi, JR, et al. Abnormal disulfide-linked oligomerization results in ER retention and altered signaling by TNFR1 mutants in TNFR1-associated periodic fever syndrome (TRAPS). Blood 2006; 108: 1320–1327.
Google Scholar | Crossref | Medline | ISI19. Bulua, AC, Simon, A, Maddipati, R, et al. Mitochondrial reactive oxygen species promote production of proinflammatory cytokines and are elevated in TNFR1- associated periodic syndrome (TRAPS). J Exp Med 2011; 208: 519–533.
Google Scholar | Crossref | Medline | ISI20. Simon, A, Park, H, Maddipati, R, et al. Concerted action of wild-type and mutant TNF receptors enhances inflammation in TNF receptor 1-associated periodic fever syndrome. Proc Natl Acad Sci USA 2010; 107: 9801–9806.
Google Scholar | Crossref | Medline21. Gattorno, M, Pelagatti, MA, Meini, A, et al. Persistent efficacy of anakinra in patients with tumor necrosis factor receptor-associated periodic syndrome. Arthritis Rheum 2008; 58: 1516–1520.
Google Scholar | Crossref | Medline22. De Benedetti, F, Gattorno, M, Anton, J, et al. Canakinumab for the treatment of autoinflammatory recurrent fever syndromes. N Engl J Med 2018; 378: 1908–1919.
Google Scholar | Crossref | Medline23. Gattorno, M, Obici, L, Cattalini, M, et al. Canakinumab treatment for patients with active recurrent or chronic TNF receptor-associated periodic syndrome (TRAPS): an open-label, phase II study. Ann Rheum Dis 2017; 76: 173–178.
Google Scholar | Crossref | Medline24. Malcova, H, Strizova, Z, Milota, T, et al. IL-1 inhibitors in the treatment of monogenic periodic fever syndromes: from the past to the future perspectives. Front Immunol 2021; 11: 619257.
Google Scholar | Crossref | Medline25. Gattorno, M, Hofer, M, Federici, S, et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 2019; 78: 1025–1032.
Google Scholar | Crossref | Medline26. ter Haar, NM, Oswald, M, Jeyaratnam, J, et al. Recommendations for the management of autoinflammatory diseases. Ann Rheum Dis 2015; 74: 1636–1644.
Google Scholar | Crossref | Medline27. Piram, M, Koné-Paut, I, Lachmann, HJ, et al. Validation of the auto-inflammatory diseases activity index (AIDAI) for hereditary recurrent fever syndromes. Ann Rheum Dis 2014; 73: 2168–2173.
Google Scholar | Crossref | Medline28. von Elm, E, Altman, DG, Egger, M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 2008; 61: 344–349.
Google Scholar | Crossref | Medline | ISI29. Cantarini, L, Rigante, D, Lucherini, OM, et al. Role of etanercept in the treatment of tumor necrosis factor receptor-associated periodic syndrome: personal experience and review of the literature. Int J Immunopathol Pharmacol 2010; 23: 701–707.
Google Scholar | SAGE Journals | ISI30. Federico, G, Rigante, D, Pugliese, AL, et al. Etanercept induces improvement of arthropathy in chronic infantile neurological cutaneous articular (CINCA) syndrome. Scand J Rheumatol 2003; 32: 312–314.
Google Scholar | Crossref | Medline31. Hashem, H, Kelly, SJ, Ganson, NJ, et al. Deficiency of adenosine deaminase 2 (DADA2), an inherited cause of polyarteritis nodosa and a mimic of other systemic rheumatologic disorders. Curr Rheumatol Rep 2017; 19: 70.
Google Scholar | Crossref | Medline32. Sagˇ, E, Sönmez, HE, Demir, S, et al. Chronic recurrent multifocal osteomyelitis in children: a single center experience over five years. Turk J Pediatr 2019; 61: 386–391.
Google Scholar | Crossref | Medline33. Rigante, D, Lopalco, G, Vitale, A, et al. Key facts and hot spots on tumor necrosis factor receptor-associated periodic syndrome. Clin Rheumatol 2014; 33: 1197–1207.
Google Scholar | Crossref | Medline34. Vitale, A, Insalaco, A, Sfriso, P, et al. A snapshot on the on-label and off-label use of the interleukin-1 inhibitors in Italy among rheumatologists and pediatric rheumatologists: a nationwide multi-center retrospective observational study. Front Pharmacol 2016; 7: 380.
Google Scholar | Crossref | Medline35. Jéru, I, Charmion, S, Cochet, E, et al. Involvement of the same TNFR1 residue in mendelian and multifactorial inflammatory disorders. PLoS ONE 2013; 8: e69757.
Google Scholar | Crossref | Medline36. Rebelo, SL, Bainbridge, SE, Amel-Kashipaz, MR, et al. Modeling of tumor necrosis factor receptor superfamily 1A mutants associated with tumor necrosis factor receptor-associated periodic syndrome indicates misfolding consistent with abnormal function. Arthritis Rheum 2006; 54: 2674–2687.
Google Scholar | Crossref | Medline37. Balci, S, Kisla Ekinci, RM, Melek, E, et al. Phenotypic variability in two patients with tumor necrosis factor receptor associated periodic fever syndrome emphasizes a rare manifestation: immunoglobulin A nephropathy. Eur J Med Genet 2020; 63: 103780.
Google Scholar | Crossref | Medline38. Ter Haar, N, Lachmann, H, Özen, S, et al. Treatment of autoinflammatory diseases: results from the Eurofever Registry and a literature review. Ann Rheum Dis 2013; 72: 678–685.
Google Scholar | Crossref | Medline39. Gaggiano, C, Vitale, A, Obici, L, et al. Clinical features at onset and genetic characterization of pediatric and adult patients with TNF-α Receptor-Associated Periodic Syndrome (TRAPS): a series of 80 cases from the AIDA Network. Mediators Inflamm 2020; 2020: 8562485.
Google Scholar | Crossref | Medline40. Lainka, E, Neudorf, U, Lohse, P, et al. Incidence of TNFRSF1A mutations in German children: epidemiological, clinical and genetic characteristics. Rheumatology 2009; 48: 987–991.
Google Scholar | Crossref | Medline41. Pelagatti, MA, Meini, A, Caorsi, R, et al. Long-term clinical profile of children with the low-penetrance R92Q mutation of the TNFRSF1A gene. Arthritis Rheum 2011; 63: 1141–1150.
Google Scholar | Crossref | Medline42. Cantarini, L, Rigante, D, Merlini, G, et al. The expanding spectrum of low-penetrance TNFRSF1A gene variants in adults presenting with recurrent inflammatory attacks: clinical manifestations and long-term follow-up. Semin Arthritis Rheum 2014; 43: 818–823.
Google Scholar | Crossref | Medline43. Hernández-Rodríguez, J, Ruíz-Ortiz, E, Tomé, A, et al. Clinical and genetic characterization of the autoinflammatory diseases diagnosed in an adult reference center. Autoimmun Rev 2016; 15: 9–15.
Google Scholar | Crossref | Medline44. Lopalco, G, Rigante, D, Vitale, A, et al. Adult-onset tumour necrosis factor receptor-associated periodic syndrome presenting with refractory chronic arthritis. Clin Exp Rheumatol 2015; 33: S171–S172.
Google Scholar | Medline45. Ozen, S, Kuemmerle-Deschner, JB, Cimaz, R, et al. International retrospective chart review of treatment patterns in severe familial mediterranean fever, tumor necrosis factor receptor-associated periodic syndrome, and mevalonate kinase deficiency/hyperimmunoglobulinemia D syndrome. Arthritis Care Res 2017; 69: 578–586.
Google Scholar | Crossref | Medline46. Camprubí, D, Mitjavila, F, Arostegui, JI, et al. Efficacy of anakinra in an adult patient with recurrent pericarditis and cardiac tamponade as initial manifestations of tumor necrosis factor receptor-associated periodic syndrome due to the R92Q TNFRSF1A variant. Int J Rheum Dis 2017; 20: 510–514.
Google Scholar | Crossref | Medline47. Mejías Trueba, M, Alonso Moreno, M, Puñal Garrido, N, et al. An unusual case of allergic reaction to anakinra in a patient with tumor nec

留言 (0)

沒有登入
gif