Analysis of allergen components and identification of bioactivity of HSP70 in pollen of Populus deltoides

1.

Schatz M, Rosenwasser L. The allergic asthma phenotype. J Allergy Clin Immunol Pract. 2014;2:645–8 quiz 649.

Article  Google Scholar 

2.

Cevhertas L, Ogulur I, Maurer DJ, Burla D, Ding M, Jansen K, et al. Advances and recent developments in asthma in 2020. Allergy. 2020;75:3124–46.

Article  Google Scholar 

3.

Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol. 2020;42:5–15.

Article  Google Scholar 

4.

Pakkasela J, Ilmarinen P, Honkamaki J, Tuomisto LE, Andersen H, Piirila P, et al. Age-specific incidence of allergic and non-allergic asthma. BMC Pulm Med. 2020;20:9.

Article  Google Scholar 

5.

Poowuttikul P, Saini S, Seth D. Inner-City Asthma in Children. Clin Rev Allergy Immunol. 2019;56:248–68.

Article  Google Scholar 

6.

Galli SJ, Tsai M, Piliponsky AM. The development of allergic inflammation. Nature. 2008;454:445–54.

CAS  Article  Google Scholar 

7.

Rachmiel M, Bloch O, Bistritzer T, Weintrob N, Ofan R, Koren-Morag N, et al. TH1/TH2 cytokine balance in patients with both type 1 diabetes mellitus and asthma. Cytokine. 2006;34:170–6.

CAS  Article  Google Scholar 

8.

Ying L, Fu Z, Luo J, Zhou C, Chen Y, Wang L, et al. Cytotoxic T lymphocyte antigen 4 immunoglobulin modified dendritic cells attenuate allergic airway inflammation and hyperresponsiveness by regulating the development of T helper type 1 (Th1)/Th2 and Th2/regulatory T cell subsets in a murine model of asthma. Clin Exp Immunol. 2011;165:130–9.

CAS  Article  Google Scholar 

9.

Camacho I, Caeiro E, Nunes C, Morais-Almeida M. Airborne pollen calendar of Portugal: a 15-year survey (2002-2017). Allergol Immunopathol (Madr). 2020;48:194–201.

Article  Google Scholar 

10.

Pablos I, Eichhorn S, Briza P, Asam C, Gartner U, Wolf M, et al. Proteomic profiling of the weed feverfew, a neglected pollen allergen source. Sci Rep. 2017;7:6049.

Article  Google Scholar 

11.

Fu W, Gao Z, Gao L, Jin J, Liu M, Sun Y, et al. Identification of a 62-kDa major allergen from Artemisia pollen as a putative galactose oxidase. Allergy. 2018;73:1041–52.

CAS  Article  Google Scholar 

12.

Zhang XL, Zhang J, Guo YH, Sun P, Jia HX, Fan W, et al. Comparative Proteomic Analysis of Mature Pollen in Triploid and Diploid Populus deltoides. Int J Mol Sci. 2016;17:1475.

13.

Zhang J, Wu LS, Fan W, Zhang XL, Jia HX, Li Y, et al. Proteomic analysis and candidate allergenic proteins in Populus deltoides CL. "2KEN8" mature pollen. Front Plant Sci. 2015;6:548.

PubMed  PubMed Central  Google Scholar 

14.

Wang L, Zhang X, Zhang J, Fan W, Lu M, Hu J. Proteomic Analysis and Identification of Possible Allergenic Proteins in Mature Pollen of Populus tomentosa. Int J Mol Sci. 2018;19:250.

15.

Ortona E, Margutti P, Delunardo F, Vaccari S, Rigano R, Profumo E, et al. Molecular and immunological characterization of the C-terminal region of a new Echinococcus granulosus Heat Shock Protein 70. Parasite Immunol. 2003;25:119–26.

CAS  Article  Google Scholar 

16.

Min HJ, Kim KS, Yoon JH, Kim CH, Cho HJ. T-helper 2 cytokine-induced heat shock protein 70 secretion and its potential association with allergic rhinitis. Int Forum Allergy Rhinol. 2017;7:530–5.

Article  Google Scholar 

17.

Gruehn S, Suphioglu C, O'Hehir RE, Volkmann D. Molecular cloning and characterization of hazel pollen protein (70 kD) as a luminal binding protein (BiP): a novel cross-reactive plant allergen. Int Arch Allergy Immunol. 2003;131:91–100.

CAS  Article  Google Scholar 

18.

Feng J, Wu Z, Wang X, Zhang Y, Teng N. Analysis of Pollen Allergens in Lily by Transcriptome and Proteome Data. Int J Mol Sci. 2019;20:5892.

19.

San Segundo-Acosta P, Oeo-Santos C, Benede S, de Los RV, Navas A, Ruiz-Leon B, et al. Delineation of the Olive Pollen Proteome and Its Allergenome Unmasks Cyclophilin as a Relevant Cross-Reactive Allergen. J Proteome Res. 2019;18:3052–66.

CAS  Article  Google Scholar 

20.

Xu F, Yu S, Qin M, Mao Y, Jin L, Che N, et al. Hydrogen-Rich Saline Ameliorates Allergic Rhinitis by Reversing the Imbalance of Th1/Th2 and Up-Regulation of CD4+CD25+Foxp3+Regulatory T Cells, Interleukin-10, and Membrane-Bound Transforming Growth Factor-beta in Guinea Pigs. Inflammation. 2018;41:81–92.

CAS  Article  Google Scholar 

21.

Villalta D, Scala E, Mistrello G, Amato S, Asero R. Evidence of Cross-Reactivity between Different Seed Storage Proteins from Hazelnut (Corylus avellana) and Walnut (Juglans regia) Using Recombinant Allergen Proteins. Int Arch Allergy Immunol. 2019;178:89–92.

CAS  Article  Google Scholar 

22.

McKenna OE, Posselt G, Briza P, Lackner P, Schmitt AO, Gadermaier G, et al. Multi-Approach Analysis for the Identification of Proteases within Birch Pollen. Int J Mol Sci. 2017;18:1433.

23.

Wang X, Guo M, Wang H, Wang X. Pollen allergen sensitization feature of seasonal allergic rhinitis in children and adolescents in northern China. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2020;34:1005–10.

PubMed  Google Scholar 

24.

Scevkova J, Vaskova Z, Sepsiova R, Dusicka J, Kovac J. Relationship between Poaceae pollen and Phl p 5 allergen concentrations and the impact of weather variables and air pollutants on their levels in the atmosphere. Heliyon. 2020;6:e04421.

Article  Google Scholar 

25.

Sabit M, Wong C, Andaya A, Ramos JD. Pollen allergen skin test and specific IgE reactivity among Filipinos: a community-based study. Allergy Asthma Clin Immunol. 2020;16:74.

CAS  Article  Google Scholar 

26.

Breiteneder H, Ebner C. Molecular and biochemical classification of plant-derived food allergens. J Allergy Clin Immunol. 2000;106:27–36.

CAS  Article  Google Scholar 

27.

Radauer C, Breiteneder H. Pollen allergens are restricted to few protein families and show distinct patterns of species distribution. J Allergy Clin Immunol. 2006;117:141–7.

CAS  Article  Google Scholar 

28.

Sircar G, Bhowmik M, Sarkar RK, Najafi N, Dasgupta A, Focke-Tejkl M, et al. Molecular characterization of a fungal cyclophilin allergen Rhi o 2 and elucidation of antigenic determinants responsible for IgE-cross-reactivity. J Biol Chem. 2020;295:2736–48.

CAS  Article  Google Scholar 

29.

Subbarayal B, Schiller D, Mobs C, de Jong NW, Ebner C, Reider N, et al. Kinetics, cross-reactivity, and specificity of Bet v 1-specific IgG4 antibodies induced by immunotherapy with birch pollen. Allergy. 2013;68:1377–86.

CAS  Article  Google Scholar 

30.

Hofmann C, Scheurer S, Rost K, Graulich E, Jamin A, Foetisch K, et al. Cor a 1-reactive T cells and IgE are predominantly cross-reactive to Bet v 1 in patients with birch pollen-associated food allergy to hazelnut. J Allergy Clin Immunol. 2013;131:1384–92 e1386.

CAS  Article  Google Scholar 

31.

Fernandez Rivas M. Cross-reactivity between fruit and vegetables. Allergol Immunopathol (Madr). 2003;31:141–6.

CAS  Article  Google Scholar 

32.

Zininga T, Ramatsui L, Shonhai A. Heat Shock Proteins as Immunomodulants. Molecules. 2018;23:2846.

33.

Bolhassani A, Agi E. Heat shock proteins in infection. Clin Chim Acta. 2019;498:90–100.

CAS  Article  Google Scholar 

34.

Tukaj S. Heat Shock Protein 70 as a Double Agent Acting Inside and Outside the Cell: Insights into Autoimmunity. Int J Mol Sci. 2020;21:5298.

35.

Elmallah MIY, Cordonnier M, Vautrot V, Chanteloup G, Garrido C, Gobbo J. Membrane-anchored heat-shock protein 70 (Hsp70) in cancer. Cancer Lett. 2020;469:134–41.

CAS  Article  Google Scholar 

36.

Shevtsov M, Huile G, Multhoff G. Membrane heat shock protein 70: a theranostic target for cancer therapy. Philos Trans R Soc Lond B Biol Sci. 2018;373:20160526.

37.

Gorovits R, Moshe A, Ghanim M, Czosnek H. Recruitment of the host plant heat shock protein 70 by Tomato yellow leaf curl virus coat protein is required for virus infection. PLoS One. 2013;8:e70280.

CAS  Article  Google Scholar 

38.

Chen X, Shi L, Chen Y, Zhu L, Zhang D, Xiao S, et al. Arabidopsis HSP70-16 is required for flower opening under normal or mild heat stress temperatures. Plant Cell Environ. 2019;42:1190–204.

CAS  Article  Google Scholar 

39.

Rowarth NM, Dauphinee AN, Denbigh GL, Gunawardena AH. Hsp70 plays a role in programmed cell death during the remodelling of leaves of the lace plant (Aponogeton madagascariensis). J Exp Bot. 2020;71:907–18.

CAS  PubMed  Google Scholar 

40.

Lu RC, Tan MS, Wang H, Xie AM, Yu JT, Tan L. Heat shock protein 70 in Alzheimer's disease. Biomed Res Int. 2014;2014:435203.

PubMed  PubMed Central  Google Scholar 

41.

Chiung YM, Lin BL, Yeh CH, Lin CY. Heat shock protein (hsp 70)-related epitopes are common allergenic determinants for barley and corn antigens. Electrophoresis. 2000;21:297–300.

CAS  Article  Google Scholar 

42.

Nakajima S, Kabata H, Kabashima K, Asano K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol Int. 2020;69:197–203.

CAS  Article  Google Scholar 

43.

Shen HD, Au LC, Lin WL, Liaw SF, Tsai JJ, Han SH. Molecular cloning and expression of a Penicillium citrinum allergen with sequence homology and antigenic crossreactivity to a hsp 70 human heat shock protein. Clin Exp Allergy. 1997;27:682–90.

CAS  Article  Google Scholar 

44.

Shokouhi Shoormasti R, Fazlollahi MR, Kazemnejad A, Tayebi B, Nadali F, Sharif Shoushtari M, et al. IgE Sensitization to Inhalant Allergens and Its Association with Allergic Diseases in Adults. Iran J Allergy Asthma Immunol. 2018;17:123–33.

PubMed  Google Scholar 

45.

Wang X, Xu C, Ji J, Cai Y, Shu Y, Chao Y, et al. IL-4/IL-13 upregulates Sonic hedgehog expression to induce allergic airway epithelial remodeling. Am J Physiol Lung Cell Mol Physiol. 2020;318:L888–99.

CAS  Article  Google Scholar 

46.

Bertorelli G, Bocchino V, Zhuo X, Chetta A, Del Donno M, Foresi A, et al. Heat shock protein 70 upregulation is related to HLA-DR expression in bronchial asthma. Effects of inhaled glucocorticoids. Clin Exp Allergy. 1998;28:551–60.

CAS  Article  Google Scholar 

47.

Yombo DJK, Mentink-Kane MM, Wilson MS, Wynn TA, Madala SK. Heat shock protein 70 is a positive regulator of airway inflammation and goblet cell hyperplasia in a mouse model of allergic airway inflammation. J Biol Chem. 2019;294:15082–94.

CAS  Article  Google Scholar 

留言 (0)

沒有登入
gif