Impact of Reticulated Platelets on Platelet Reactivity in Neonates

1. Baker-Groberg, SM, Lattimore, S, Recht, M, McCarty, OJ, Haley, KM. Assessment of neonatal platelet adhesion, activation, and aggregation. J Thromb Haemost. 2016;14(4):815–827. doi:10.1111/jth.13270
Google Scholar | Crossref | Medline2. Esiaba, I, Mousselli, I, Faison, GM, Angeles, DM, Boskovic, DS. Platelets in the newborn. In: Chubarova, Antonina I , ed. Neonatal Medicine. IntechOpen; 2019:53–83:chap 4. doi:10.5772/intechopen.86715
Google Scholar3. Lorenz, V, Ferrer-Marin, F, Israels, SJ, Sola-Visner, M. Platelet function in the newborn. In: Michelson, AD, Cattaneo, M, Frelinger, A, Newman, P, eds. Platelets. 4th ed. Elsevier; 2019:443–457. Vol. 25. doi:10.1016/B978-0-12-813456-6.00025-4
Google Scholar | Crossref4. Margraf, A, Nussbaum, C, Sperandio, M. Ontogeny of platelet function. Blood Adv. 2019;3(4):692–703. doi:10.1182/bloodadvances.2018024372
Google Scholar | Crossref | Medline5. Caparrós-Pérez, E, Teruel-Montoya, R, Palma-Barquero, V, et al. Down regulation of the munc18b-syntaxin-11 complex and β1-tubulin impairs secretion and spreading in neonatal platelets. Thromb Haemost. 2017;117(11):2079–2091. doi:10.1160/TH17-04-0241
Google Scholar | Crossref | Medline6. Stokhuijzen, E, Koornneef, JM, Nota, B, et al. Differences between platelets derived from neonatal cord blood and adult peripheral blood assessed by mass spectrometry. J Proteome Res. 2017;16(10):3567–3575. doi:10.1021/acs.jproteome.7b00298
Google Scholar | Crossref | Medline7. Freynhofer, MK, Iliev, L, Bruno, V, et al. Platelet turnover predicts outcome after coronary intervention. Thromb Haemost. 2017;117(5):923–933. doi:10.1160/TH16-10-0785
Google Scholar | Crossref | Medline8. Stratz, C, Nührenberg, T, Amann, M, et al. Impact of reticulated platelets on antiplatelet response to thienopyridines is independent of platelet turnover. Thromb Haemost. 2016;116(5):941–948. doi:10.1160/TH16-03-0191
Google Scholar | Medline9. Davenport, D, Liu, Z-J, Sola-Visner, M. Changes in megakaryopoiesis over ontogeny and their implications in health and disease. Platelets. 2020;31(6):692–699. doi:10.1080/09537104.2020.1742879
Google Scholar | Crossref | Medline10. MacQueen, BC, Christensen, RD, Henry, E, et al. The immature platelet fraction: creating neonatal reference intervals and using these to categorize neonatal thrombocytopenias. J Perinatol. 2017;37(7):834–838. doi:10.1038/jp.2017.48
Google Scholar | Crossref | Medline11. McDonnell, A, Bride, KL, Lim, D, Paessler, M, Witmer, CM, Lambert, MP. Utility of the immature platelet fraction in pediatric immune thrombocytopenia: differentiating from bone marrow failure and predicting bleeding risk. Pediatr Blood Cancer. 2018;65(2). doi:10.1002/pbc.26812
Google Scholar | Crossref | Medline12. Buttarello, M, Mezzapelle, G, Freguglia, F, Plebani, M. Reticulated platelets and immature platelet fraction: clinical applications and method limitations. Int J Lab Hematol. 2020;42(4):363–370. doi:10.1111/ijlh.13177
Google Scholar | Crossref | Medline13. Ibrahim, H, Schutt, RC, Hannawi, B, DeLao, T, Barker, CM, Kleiman, NS. Association of immature platelets with adverse cardiovascular outcomes. J Am Coll Cardiol. 2014;64(20):2122–2129. doi:10.1016/j.jacc.2014.06.1210
Google Scholar | Crossref | Medline | ISI14. Bernlochner, I, Goedel, A, Plischke, C, et al. Impact of immature platelets on platelet response to ticagrelor and prasugrel in patients with acute coronary syndrome. Eur Heart J. 2015;36(45):3202–3210. doi:10.1093/eurheartj/ehv326
Google Scholar | Crossref | Medline15. Lador, A, Leshem-Lev, D, Spectre, G, Abelow, A, Kornowski, R, Lev, EI. Characterization of surface antigens of reticulated immature platelets. J Thromb Thrombolysis. 2017;44(3):291–297. doi:10.1007/s11239-017-1533-x
Google Scholar | Crossref | Medline16. Verdoia, M, Sartori, C, Pergolini, P, et al. Immature platelet fraction and high-on treatment platelet reactivity with ticagrelor in patients with acute coronary syndromes. J Thromb Thrombolysis. 2016;41(4):663–670. doi:10.1007/s11239-015-1279-2
Google Scholar | Crossref | Medline17. Sallmon, H, Metze, B, Koehne, P, et al. Mature and immature platelets during the first week after birth and incidence of patent ductus arteriosus. Cardiol Young. 2020;30(6):769–773. doi:10.1017/S1047951120000943
Google Scholar | Crossref | Medline18. Matter, RM, Ragab, IA, Roushdy, AM, Ahmed, AG, Aly, HH, Ismail, EA. Determinants of platelet count in pediatric patients with congenital cyanotic heart disease: role of immature platelet fraction. Congenit Heart Dis. 2018;13(1):118–123. doi:10.1111/chd.12530
Google Scholar | Crossref | Medline19. Jeon, K, Kim, M, Lee, J, et al. Immature platelet fraction: a useful marker for identifying the cause of thrombocytopenia and predicting platelet recovery. Medicine (Baltimore). 2020;99(7). doi:10.1097/MD.0000000000019096
Google Scholar | Crossref20. Patregnani, J, Klugman, D, Zurakowski, D, et al. High on aspirin platelet reactivity in pediatric patients undergoing the Fontan procedure. Circulation. 2016;134(17):1303–1305. doi:10.1161/CIRCULATIONAHA.116.023457
Google Scholar | Crossref | Medline21. Waller, AK, Lantos, L, Sammut, A, et al. Flow cytometry for near-patient testing in premature neonates reveals variation in platelet function: a novel approach to guide platelet transfusion. Pediatr Res. 2019;85(6):874–884. doi:10.1038/s41390-019-0316-9
Google Scholar | Crossref | Medline22. Urban, D, Pluthero, FG, Christensen, H, et al. Decreased numbers of dense granules in fetal and neonatal platelets. Haematologica. 2017;102(2):e36–e38. doi:10.3324/haematol.2016.152421
Google Scholar | Crossref | Medline23. Koltsova, EM, Balashova, EN, Ignatova, AA, et al. Impaired platelet activity and hypercoagulation in healthy term and moderately preterm newborns during the early neonatal period. Pediatr Res. 2019;85(1):63–71. doi:10.1038/s41390-018-0184-8
Google Scholar | Crossref | Medline24. Psaila, B, Bussel, JB, Linden, MD, et al. In vivo effects of eltrombopag on platelet function in immune thrombocytopenia: no evidence of platelet activation. Blood. 2012;119(17):4066–4072. doi:10.1182/blood-2011-11-393900
Google Scholar | Crossref | Medline25. Yip, C, Linden, MD, Attard, C, Monagle, P, Ignjatovic, V. Platelets from children are hyper-responsive to activation by thrombin receptor activator peptide and adenosine diphosphate compared to platelets from adults. Br J Haematol. 2015;168(4):526–532. doi:10.1111/bjh.13153
Google Scholar | Crossref | Medline26. Ngo, ATP, Sheriff, J, Rocheleau, AD, et al. Assessment of neonatal, cord, and adult platelet granule trafficking and secretion. Platelets. 2020;31(1):68–78. doi:10.1080/09537104.2019.1573314
Google Scholar | Crossref | Medline27. Palma-Barqueros, V, Torregrosa, JM, Caparrós-Pérez, E, et al. Developmental differences in platelet inhibition response to prostaglandin E1. Neonatology. 2020;117(1):15–23. doi:10.1159/000504173
Google Scholar | Crossref | Medline28. Schlagenhauf, A, Haidl, H, Leschnik, B, Leis, HJ, Heinemann, A, Muntean, W. Prostaglandin E2 levels and platelet function are different in cord blood compared to adults. Thromb Haemost. 2015;113(1):97–106. doi:10.1160/TH14-03-0218
Google Scholar | Crossref | Medline29. Anetsberger, A, Blobner, M, Haller, B, et al. Immature platelets as a novel biomarker for adverse cardiovascular events in patients after non-cardiac surgery. Thromb Haemost. 2017;117(10):1887–1895. doi:10.1160/TH16-10-0804
Google Scholar | Crossref | Medline30. Armstrong, PC, Hoefer, T, Knowles, RB, et al. Newly formed reticulated platelets undermine pharmacokinetically short-lived antiplatelet therapies. Arterioscler Thromb Vasc Biol. 2017;37(5):949–956. doi:10.1161/ATVBAHA.116.308763
Google Scholar | Crossref | Medline31. Schmugge, M, Speer, O, Kroiss, S, et al. Monitoring aspirin therapy in children after interventional cardiac catheterization: laboratory measures, dose response, and clinical outcomes. Eur J Pediatr. 2015;174(7):933–941. doi:10.1007/s00431-014-2485-1
Google Scholar | Crossref | Medline32. Saini, A, Joshi, AD, Cowan, KM, et al. High acetylsalicylic acid dosing in infants after modified Blalock-Taussig shunt. Cardiol Young. 2019;29(3):389–397. doi:10.1017/S1047951118002536
Google Scholar | Crossref | Medline33. Jennings, LK, Michelson, AD, Jacoski, MV, et al. Pharmacodynamic effects of clopidogrel in pediatric cardiac patients: a comparative study of platelet aggregation response. Platelets. 2012;23(6):430–438. doi:10.3109/09537104.2011.650244
Google Scholar | Crossref | Medline34. Zhao, W, Leroux, S, Biran, V, Jacqz-Aigrain, E. Developmental pharmacogenetics of CYP2C19 in neonates and young infants: omeprazole as a probe drug. Br J Clin Pharmacol. 2018;84(5):997–1005. doi:10.1111/bcp.13526
Google Scholar | Crossref | Medline35. Perl, L, Lerman-Shivek, H, Rechavia, E, et al. Response to prasugrel and levels of circulating reticulated platelets in patients with ST-segment elevation myocardial infarction. J Am Coll Cardiol. 2014;63(6):513–517. doi:10.1016/j.jacc.2013.07.110
Google Scholar | Crossref | Medline36. Styles, L, Heiselman, D, Heath, LE, et al. Prasugrel in children with sickle cell disease: pharmacokinetic and pharmacodynamic data from an open-label, adaptive-design, dose-ranging study. J Pediatr Hematol Oncol. 2015;37(1):1–9. doi:10.1097/MPH.0000000000000291
Google Scholar | Crossref | Medline37. Jakubowski, JA, Hoppe, CC, Zhou, C, et al. Real-time dose adjustment using point-of-care platelet reactivity testing in a double-blind study of prasugrel in children with sickle cell anaemia. Thromb Haemost. 2017;117(3):580–588. doi:10.1160/TH16-09-0731
Google Scholar | Crossref | Medline38. Söderlund, F, Asztély, AK, Jeppsson, A, et al. In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. Thromb Res. 2015;136(3):620–624. doi:10.1016/j.thromres.2015.07.013
Google Scholar | Crossref | Medline39. Vargas, D, Zhou, H, Yu, X, et al. Cangrelor PK/PD analysis in post-operative neonatal cardiac patients at risk for thrombosis. J Thromb Haemost. 2021;19(1):202–211. doi:10.1111/jth.15141
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif