Improving spatial data in health geographics: a practical approach for testing data to measure children’s physical activity and food environments using Google Street View

1.

Smith M, Hosking J, Woodward A, Witten K, MacMillan A, Field A, Baas P, Mackie H. Systematic literature review of built environment effects on physical activity and active transport—an update and new findings on health equity. Int J Behav Nutr Phys Act. 2017;14(1):158.

PubMed  PubMed Central  Article  Google Scholar 

2.

Osei-Assibey G, Dick S, Macdiarmid J, Semple S, Reilly JJ, Ellaway A, Cowie H, McNeill G. The influence of the food environment on overweight and obesity in young children: a systematic review. BMJ Open. 2012;2(6):001538.

Article  Google Scholar 

3.

de Vet E, de Ridder DTD, de Wit JBF. Environmental correlates of physical activity and dietary behaviours among young people: a systematic review of reviews. Obes Rev. 2011;12(5):e130–42.

PubMed  Article  PubMed Central  Google Scholar 

4.

Hinckson E, Cerin E, Mavoa S, Smith M, Badland H, Stewart T, Duncan S, Schofield G. Associations of the perceived and objective neighborhood environment with physical activity and sedentary time in New Zealand adolescents. Int J Behav Nutr Phys Act. 2017;14(1):145–145.

PubMed  PubMed Central  Article  Google Scholar 

5.

Freeman N, Gage R, Chambers T, Blaschke P, Cook H, Stanley J, Pearson A, Smith M, Barr M, Signal L. Where do the children play? An objective analysis of children’s use of green space. Health Promotion International 2020.

6.

Pan X, Zhao L, Luo J, Li Y, Zhang L, Wu T, Smith M, Dai S, Jia P. Access to bike lanes and childhood obesity: a systematic review and meta-analysis. Obesity Rev 2020.

7.

Jia P, Zou Y, Wu Z, Zhang D, Wu T, Smith M, Xiao Q. Street connectivity, physical activity, and childhood obesity: a systematic review and meta-analysis. Obesity Rev 2019.

8.

Ikeda E, Stewart T, Garrett N, Egli V, Mandic S, Hosking J, Witten K, Hawley G, Tautolo ES, Rodda J, et al. Built environment associates of active school travel in New Zealand children and youth: a systematic meta-analysis using individual participant data. J Transp Health. 2018;9:117–31.

Article  Google Scholar 

9.

Davison KK, Lawson CT. Do attributes in the physical environment influence children’s physical activity? A review of the literature. Int J Behav Nutr Phys Act. 2006;3(1):1–17.

Article  Google Scholar 

10.

Smith M, Cui J, Ikeda E, Mavoa S, Hasanzadeh K, Zhao J, Rinne TE, Donnellan N, Kyttä M. Objective measurement of children’s physical activity geographies: a systematic search and scoping review. Health Place. 2021;67:102489.

PubMed  PubMed Central  Article  Google Scholar 

11.

Jia P, Yu C, Remais JV, Stein A, Liu Y, Brownson RC, Lakerveld J, Wu T, Yang L, Smith M, et al. Spatial Lifecourse epidemiology reporting standards (ISLE-ReSt) statement. Health Place. 2020;61:102243.

PubMed  Article  Google Scholar 

12.

Elbel B, Tamura K, McDermott ZT, Wu E, Schwartz AE. Childhood obesity and the food environment: a population-based sample of public school children in New York City. Obesity. 2020;28(1):65–72.

PubMed  Article  PubMed Central  Google Scholar 

13.

Fraser LK, Edwards KL. The association between the geography of fast food outlets and childhood obesity rates in Leeds, UK. Health Place. 2010;16(6):1124–8.

PubMed  Article  Google Scholar 

14.

Egli V, Hobbs M, Carlson J, Donnellan N, Mackay L, Exeter D, Villanueva K, Zinn C, Smith M. Deprivation matters: understanding associations between neighbourhood deprivation, unhealthy food outlets, unhealthy dietary behaviours and child body size using structural equation modelling. J Epidemiol Community Health. 2020;74(5):460–6.

PubMed  Article  Google Scholar 

15.

Nambiar S, Truby H, Davies PS, Baxter K. Use of the waist–height ratio to predict metabolic syndrome in obese children and adolescents. J Paediatr Child Health. 2013;49(4):E281–7.

PubMed  Article  PubMed Central  Google Scholar 

16.

Vandevijvere S, Sushil Z, Exeter DJ, Swinburn B. Obesogenic retail food environments around New Zealand schools: a national study. Am J Prev Med. 2016;51(3):e57–66.

PubMed  Article  PubMed Central  Google Scholar 

17.

Díez J, Cebrecos A, Rapela A, Borrell LN, Bilal U, Franco M. Socioeconomic inequalities in the retail food environment around schools in a Southern European context. Nutrients. 2019;11(7):1511.

PubMed Central  Article  Google Scholar 

18.

Day PL, Pearce J. Obesity-promoting food environments and the spatial clustering of food outlets around schools. Am J Prev Med. 2011;40(2):113–21.

PubMed  Article  PubMed Central  Google Scholar 

19.

Chen H-J, Wang Y. Changes in the neighborhood food store environment and children’s body mass index at Peripuberty in the United States. J Adolesc Health. 2016;58(1):111–8.

PubMed  PubMed Central  Article  Google Scholar 

20.

Casey R, Oppert J-M, Weber C, Charreire H, Salze P, Badariotti D, Banos A, Fischler C, Hernandez CG, Chaix B, et al. Determinants of childhood obesity: what can we learn from built environment studies? Food Qual Prefer. 2014;31:164–72.

Article  Google Scholar 

21.

Giles-Corti B, Kelty SF, Zubrick SR, Villanueva KP. Encouraging walking for transport and physical activity in children and adolescents: how important is the built environment? Sports Med (Auckland, NZ). 2009;39(12):995–1009.

Article  Google Scholar 

22.

Hughey S, Kaczynski AT, Porter DE, Hibbert J, Turner-McGrievy G, Liu J. Development and testing of a multicomponent obesogenic built environment measure for youth using kernel density estimations. Health Place. 2019;56:174–83.

Article  Google Scholar 

23.

Giles-Corti B, Wood G, Pikora T, Learnihan V, Bulsara M, Van Niel K, Timperio A, McCormack G, Villanueva K. School site and the potential to walk to school: the impact of street connectivity and traffic exposure in school neighborhoods. Health Place. 2011;17(2):545–50.

PubMed  Article  Google Scholar 

24.

Badland H, Donovan P, Mavoa S, Oliver M, Chaudhury M, Witten K. Assessing neighbourhood destination access for children: development of the NDAI-C audit tool. Environ Plann B Plann Des. 2015;42(6):1148–60.

Article  Google Scholar 

25.

Mavoa S, Bagheri N, Koohsari MJ, Kaczynski AT, Lamb KE, Oka K, O’Sullivan D, Witten K. How do neighbourhood definitions influence the associations between built environment and physical activity? Int J Environ Res Public Health. 2019;16(9):1501.

PubMed Central  Article  PubMed  Google Scholar 

26.

Wang F. Why public health needs GIS: a methodological overview. Ann GIS. 2020;26(1):1–12.

PubMed  Article  Google Scholar 

27.

Degbelo A, Kuhn W. Spatial and temporal resolution of geographic information: an observation-based theory. Open Geospatial Data, Softw Stand. 2018;3(1):12.

Article  Google Scholar 

28.

Senaratne H, Mobasheri A, Ali AL, Capineri C, Haklay M. A review of volunteered geographic information quality assessment methods. Int J Geogr Inf Sci. 2017;31(1):139–67.

Article  Google Scholar 

29.

Kwan M-P. Beyond space (As We Knew It): toward temporally integrated geographies of segregation, health, and accessibility. Ann Assoc Am Geogr. 2013;103(5):1078–86.

Article  Google Scholar 

30.

Ott T, Swiaczny F. Integrating time in geographic information systems. In: Time-integrative geographic information systems: management and analysis of spatio-temporal data. Berlin, Heidelberg: Springer Berlin Heidelberg; 2001:55–75.

31.

Ferreira K, Oliveira A, Monteiro A, Almeida D. Temporal GIS and spatiotemporal data sources; 2015.

32.

Jankowska MM, Schipperijn J, Kerr J. A framework for using GPS data in physical activity and sedentary behavior studies. Exerc Sport Sci Rev. 2015;43(1):48–56.

PubMed  PubMed Central  Article  Google Scholar 

33

Gregory IN, Ell PS. Historical GIS: technologies, methodologies, and scholarship. Cambridge: Cambridge University Press; 2007.

Book  Google Scholar 

34.

Kwan M-P. The uncertain geographic context problem. Ann Assoc Am Geogr. 2012;102(5):958–68.

Article  Google Scholar 

35.

Kwan MP, Peterson RD, Browning CR, Burrington LA, Calder CA, Krivo LJ. Reconceptualizing sociogeographic context for the study of drug use, abuse, and addiction. In: Thomas YF, Richardson D, Cheung I, editors. Geography and drug addiction. Springer; 2008. p. 437–46.

Chapter  Google Scholar 

36.

Villanueva K, Giles-Corti B, Bulsara M, McCormack GR, Timperio A, Middleton N, Beesley B, Trapp G. How far do children travel from their homes? Exploring children’s activity spaces in their neighborhood. Health Place. 2012;18(2):263–73.

PubMed  Article  Google Scholar 

37.

Sherman JE, Spencer J, Preisser JS, Gesler WM, Arcury TA. A suite of methods for representing activity space in a healthcare accessibility study. Int J Health Geogr. 2005;4(1):24.

PubMed  PubMed Central  Article  Google Scholar 

38.

Weber J, Kwan M-P. Evaluating the effects of geographic contexts on individual accessibility: a multilevel approach. Urban Geogr. 2003;24(8):647–71.

Article  Google Scholar 

39.

Chaix B, Kestens Y, Perchoux C, Karusisi N, Merlo J, Labadi K. An interactive mapping tool to assess individual mobility patterns in neighborhood studies. Am J Prev Med. 2012;43(4):440–50.

PubMed  Article  PubMed Central  Google Scholar 

40.

Jia P, Xue H, Yin L, Stein A, Wang M, Wang Y. Spatial technologies in obesity research: current applications and future promise. Trends Endocrinol Metab. 2019;30(3):211–23.

CAS  PubMed  Article  PubMed Central  Google Scholar 

41.

Remmers T, Thijs C, Ettema D, de Vries S, Slingerland M, Kremers S. Critical hours and important environments: relationships between afterschool physical activity and the physical environment using GPS, GIS and accelerometers in 10–12-year-old children. Int J Environ Res Public Health. 2019;16(17):3116.

PubMed Central  Article  Google Scholar 

42.

Oliver M, Mavoa S, Badland H, Parker K, Donovan P, Kearns RA, Lin E-Y, Witten K. Associations between the neighbourhood built environment and out of school physical activity and active travel: an examination from the Kids in the City study. Health Place. 2015;36:57–64.

PubMed  Article  PubMed Central  Google Scholar 

43.

Schootman M, Nelson EJ, Werner K, Shacham E, Elliott M, Ratnapradipa K, Lian M, McVay A. Emerging technologies to measure neighborhood conditions in public health: implications for interventions and next steps. Int J Health Geogr. 2016;15(1):20.

CAS  PubMed  PubMed Central  Article  Google Scholar 

44.

Fry D, Mooney SJ, Rodríguez DA, Caiaffa WT, Lovasi GS. Assessing Google street view image availability in Latin American cities. J Urban Health. 2020;97(4):552–60.

PubMed  PubMed Central  Article  Google Scholar 

45.

Cinnamon J, Gaffney A. Do-it-yourself Street Views and the urban imaginary of Google Street View. J Urban Technol. 2021:1–22.

46.

Curtis JW, Curtis A, Mapes J, Szell AB, Cinderich A. Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates. Int J Health Geogr. 2013;12(1):1–10.

Article  Google Scholar 

47.

Rzotkiewicz A, Pearson AL, Dougherty BV, Shortridge A, Wilson N. Systematic review of the use of Google Street View in health research: major themes, strengths, weaknesses and possibilities for future research. Health Place. 2018;52:240–6.

PubMed  Article  PubMed Central 

留言 (0)

沒有登入
gif