Effects of fatty acid nitroalkanes on signal transduction pathways and airway macrophage activation

1. Freeman, B, O’Donnell, VB, Schopfer, FJ. The discovery of nitro-fatty acids as products of metabolic and inflammatory reactions and mediators of adaptive cell signaling. Nitric Oxide 2018; 77: 106–111.
Google Scholar | Crossref | Medline2. Melo, T, Marques, SS, Ferreria, I, et al. New insights into the anti-inflammatory and antioxidant properties of nitrated phospholipids. Lipids 2018; 53: 117–131.
Google Scholar | Crossref | Medline3. Rudolph, V, Schopfer, FJ, Khoo, NK, et al. Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction. J Biol Chem 2009; 284: 1461–1473.
Google Scholar | Crossref | Medline4. Ichikawa, T, Zhang, J, Chen, K, et al. Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 2008; 149: 4086–4094.
Google Scholar | Crossref | Medline5. Reddy, AT, Lakshmi, SP, Zhang, Y, et al. Nitrated fatty acids reverse pulmonary fibrosis by dedifferentiating myofibroblasts and promoting collagen uptake by alveolar macrophages. FASEB J 2014; 28: 5299–5310.
Google Scholar | Crossref | Medline6. Pryor, W, Lightsey, JW, Church, DF. Reaction of nitrogen dioxide with alkenes and polyunsaturated fatty acids: addition and hydrogen abstraction mechanisms. J Am Chem Soc 1982; 104: 6685–6692.
Google Scholar | Crossref | ISI7. Delmastro-Greenwood, M, Hughan, KS, Vitturi, DA, et al. Nitrite and nitrate-dependent generation of anti-inflammatory fatty acid nitroalkenes. Free Radic Biol Med 2015; 89: 333–341.
Google Scholar | Crossref | Medline8. Rudolph, V, Rudolph, TK, Schopfer, FJ, et al. Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. Cardiovasc Res 2010; 85: 155–166.
Google Scholar | Crossref | Medline9. Salvatore, SR, Rowart, P, Schopfer, FJ. Mass spectrometry-based study defines the human urine nitrolipidome. Free Radic Biol Med 2021; 162: 327–337.
Google Scholar10. Awwad, K, Steinbrink, SD, Fromel, T, et al. Electrophilic fatty acid species inhibit 5-lipoxygenase and attenuate sepsis-induced pulmonary inflammation. Antioxid Redox Signal 2014; 20: 2667–2680.
Google Scholar | Crossref | Medline11. Ceaser, EK, Moellering, DR, Shiva, S, et al. Mechanisms of signal transduction mediated by oxidized lipids: the role of the electrophile-responsive proteome. Biochem Soc Trans 2004; 32: 151–155.
Google Scholar | Crossref | Medline12. Isom, AL, Barnes, S, Wilson, L, et al. Modification of cytochrome c by 4-hydroxy- 2-nonenal: evidence for histidine, lysine, and arginine-aldehyde adducts. J Am Soc Mass Spectrom 2004; 15: 1136–1147.
Google Scholar | Crossref | Medline13. Batthyany, C, Schopfer, FJ, Baker, PR, et al. Reversible post-translational modification of proteins by nitrated fatty acids in vivo. J Biol Chem 2006; 281: 20450–20463.
Google Scholar | Crossref | Medline | ISI14. Wang, W, Li, C, Yang, T. Protection of nitro-fatty acid against kidney diseases. Am J Physiol Renal Physiol 2016; 310: F697–F704.
Google Scholar | Crossref | Medline15. Villacorta, L, Gao, Z, Schopfer, FJ, et al. Nitro-fatty acids in cardiovascular regulation and diseases: characteristics and molecular mechanisms. Front Biosci (Landmark Ed) 2016; 21: 873–889.
Google Scholar | Crossref | Medline16. Panati, K, Thimmana, LV, Narala, VR. Electrophilic nitrated fatty acids are potential therapeutic candidates for inflammatory and fibrotic lung diseases. Nitric Oxide 2020; 102: 28–38.
Google Scholar | Crossref | Medline17. Khoo, NKH, Li, L, Salvatore, SR, et al. Electrophilic fatty acid nitroalkenes regulate Nrf2 and NF-kappaB signaling: a medicinal chemistry investigation of structure-function relationships. Sci Rep 2018; 8: 2295.
Google Scholar | Crossref | Medline18. Kansanen, E, Jyrkkanen, HK, Volger, OL, et al. Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitro-oleic acid. J Biol Chem 2009; 284: 33233–33241.
Google Scholar | Crossref | Medline19. Cui, T, Schopfer, FJ, Zhang, J, et al. Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J Biol Chem 2006; 281: 35686–35698.
Google Scholar | Crossref | Medline | ISI20. Schopfer, FJ, Baker, PR, Giles, G, et al. Fatty acid transduction of nitric oxide signaling. Nitrolinoleic acid is a hydrophobically stabilized nitric oxide donor. J Biol Chem 2005; 280: 19289–19297.
Google Scholar | Crossref | Medline21. Ahmed, SM, Luo, L, Namani, A, et al. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis 2017; 1863: 585–597.
Google Scholar | Crossref | Medline22. Byers, DE, Holtzman, MJ. Alternatively activated macrophages and airway disease. Chest 2011; 140: 768–774.
Google Scholar | Crossref | Medline23. Sibille, Y, Reynolds, HY. Macrophages and polymorphonuclear neutrophils in lung defense and injury. Am Rev Respir Dis 1990; 141: 471–501.
Google Scholar | Crossref | Medline | ISI24. Rubins, JB. Alveolar macrophages: wielding the double-edged sword of inflammation. Am J Respir Crit Care Med 2003; 167: 103–104.
Google Scholar | Crossref | Medline | ISI25. Haslett, C. Granulocyte apoptosis and its role in the resolution and control of lung inflammation. Am J Respir Crit Care Med 1999; 160: S5–11.
Google Scholar | Crossref | Medline26. Laskin, DL, Malaviya, R, Laskin, JD. Role of macrophages in acute lung injury and chronic fibrosis induced by pulmonary toxicants. Toxicol Sci 2019; 168: 287–301.
Google Scholar | Crossref | Medline27. Irey, EA, Lassiter, CM, Brady, NJ, et al. JAK/STAT inhibition in macrophages promotes therapeutic resistance by inducing expression of protumorigenic factors. Proc Natl Acad Sci U S A 2019; 116: 12442–12451.
Google Scholar | Crossref | Medline28. Qin, H, Holdbrooks, AT, Liu, Y, et al. SOCS3 deficiency promotes M1 macrophage polarization and inflammation. J Immunol 2012; 189: 3439–3448.
Google Scholar | Crossref | Medline | ISI29. Milara, J, Hernandez, G, Ballester, B, et al. The JAK2 pathway is activated in idiopathic pulmonary fibrosis. Respir Res 2018; 19: 24.
Google Scholar | Crossref | Medline30. Moine, P, McIntyre, R, Schwartz, MD, et al . NF-kappaB regulatory mechanisms in alveolar macrophages from patients with acute respiratory distress syndrome. Shock 2000; 13: 85–91.
Google Scholar | Crossref | Medline31. Zaynagetdinov, R, Sherrill, TP, Gleaves, LA, et al. Chronic NF-kappaB activation links COPD and lung cancer through generation of an immunosuppressive microenvironment in the lungs. Oncotarget 2016; 7: 5470–5482.
Google Scholar | Crossref | Medline32. Lawrence, T. The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harb Perspect Biol 2009; 1: a001651.
Google Scholar | Crossref | Medline | ISI33. Abrial, C, Grassin-Delyle, S, Salvator, H, et al. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages. Br J Pharmacol 2015; 172: 4319–4330.
Google Scholar | Crossref | Medline34. Cuschieri, J, Umanskiy, K, Solomkin, J. PKC-zeta is essential for endotoxin-induced macrophage activation. J Surg Res 2004; 121: 76–83.
Google Scholar | Crossref | Medline35. Guo, CJ, Schopfer, FJ, Gonzales, L, et al. Atypical PKCzeta transduces electrophilic fatty acid signaling in pulmonary epithelial cells. Nitric Oxide 2011; 25: 366–372.
Google Scholar | Crossref | Medline36. Ohkuri, T, Kosaka, A, Nagato, T, et al. Effects of STING stimulation on macrophages: STING agonists polarize into “classically” or “alternatively” activated macrophages? Hum Vaccin Immunother 2018; 14: 285–287.
Google Scholar | Crossref | Medline37. Kobayashi, EH, Suzuki, T, Funayama, R, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun 2016; 7: 11624.
Google Scholar | Crossref | Medline | ISI38. Reddy, RC. Immunomodulatory role of PPAR-gamma in alveolar macrophages. J Investig Med 2008; 56: 522–527.
Google Scholar | Crossref | Medline39. Schopfer, FJ, Vitturi, DA, Jorkasky, DK, et al. Nitro-fatty acids: new drug candidates for chronic inflammatory and fibrotic diseases. Nitric Oxide 2018; 79: 31–37.
Google Scholar | Crossref | Medline40. Borniquel, S, Jansson, EA, Cole, MP, et al. Nitrated oleic acid up-regulates PPARgamma and attenuates experimental inflammatory bowel disease. Free Radic Biol Med 2010; 48: 499–505.
Google Scholar | Crossref | Medline41. Diaz-Amarilla, P ME, Trostchansky, A, Trias, E, et al. Electrophilic nitro-fatty acids prevent astrocyte-mediated toxicity to motor neurons in a cell model of familial amyotrophic lateral sclerosis via nuclear factor erythroid 2-related factor activation. Free Radic Biol Med 2016; 95: 112–120.
Google Scholar | Crossref | Medline42. Reddy, AT, Lakshmi, SP, Muchumarri, RR, et al. Nitrated fatty acids reverse cigarette smoke-induced alveolar macrophage activation and inhibit protease activity via electrophilic S-alkylation. PLoS One 2016; 11: e0153336.
Google Scholar | Crossref | Medline43. Schopfer, FJ, Cole, MP, Groeger, AL, et al. Covalent peroxisome proliferator-activated receptor gamma adduction by nitro-fatty acids: selective ligand activity and anti-diabetic signaling actions. J Biol Chem 2010; 285: 12321–12333.
Google Scholar | Crossref | Medline44. McLoughlin, RM, Jenkins, BJ, Grail, D, et al. IL-6 trans-signaling via STAT3 directs T cell infiltration in acute inflammation. Proc Natl Acad Sci U S A 2005; 102: 9589–9594.
Google Scholar | Crossref | Medline45. Yeh, CH, Shih, HC, Hong, HM, et al. Protective effect of wogonin on proinflammatory cytokine generation via Jak1/3-STAT1/3 pathway in lipopolysaccharide stimulated BV2 microglial cells. Toxicol Ind Health 2015; 31: 960–966.
Google Scholar | SAGE Journals | ISI46. Malyshev, I, Malyshev, Y. Current concept and update of the macrophage plasticity concept: intracellular mechanisms of reprogramming and M3 macrophage “switch” phenotype. Biomed Res Int 2015; 2015: 341308.
Google Scholar | Crossref | Medline47. Bhattacharjee, A, Shukla, M, Yakubenko, VP, et al. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 2013; 54: 1–16.
Google Scholar | Crossref | Medline48. Kansanen, E, Kuosmanen, SM, Ruotsalainen, AK, et al. Nitro-oleic acid regulates endothelin signaling in human endothelial cells. Mol Pharmacol 2017; 92: 481–490.
Google Scholar | Crossref | Medline49. Itoh, K, Wakabayashi, N, Katoh, Y, et al.

留言 (0)

沒有登入
gif