SPM Receptor Expression and Localization in Irradiated Salivary Glands

1. Siegel, RL, Miller, KD, Jemal, A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):7–30.
Google Scholar | Crossref | Medline2. Tyler, MA, Mohamed, ASR, Smith, JB, Aymard, JM, Fuller, CD, Phan, J, Frank, SJ, Ferrarotto, R, Kupferman, ME, Hanna, EY, Gunn, GB, Su, SY. Long-term quality of life after definitive treatment of sinonasal and nasopharyngeal malignancies. Laryngoscope. 2020;130(1):86–93.
Google Scholar | Crossref3. Ge, X, Liao, Z, Yuan, J, Mao, D, Li, Y, Yu, E, Wang, X, Ding, Z. Radiotherapy-related quality of life in patients with head and neck cancers: a meta-analysis. Support Care Cancer. 2020;28(6):2701–12.
Google Scholar4. Pedersen, AM, Bardow, A, Jensen, SB, Nauntofte, B. Saliva and gastrointestinal functions of taste, mastication, swallowing and digestion. Oral Dis. 2002;8(3):117–29.
Google Scholar | Crossref | Medline5. Jehmlich, N, Stegmaier, P, Golatowski, C, Salazar, MG, Rischke, C, Henke, M, Völker, U. Differences in the whole saliva baseline proteome profile associated with development of oral mucositis in head and neck cancer patients undergoing radiotherapy. J Proteomics. 2015;125:98–103.
Google Scholar6. Llena-Puy, C. The role of saliva in maintaining oral health and as an aid to diagnosis. Med Oral Patol Oral Cir Bucal. 2006;11(5):E449–55.
Google Scholar7. Belstrøm, D, Holmstrup, P, Fiehn, NE, Rosing, K, Bardow, A, Paster, BJ, Lynge Pedersen, AM. Bacterial composition in whole saliva from patients with severe hyposalivation: a case-control study. Oral Dis. 2016;22(4):330–7.
Google Scholar8. Grundmann, O, Mitchell, GC, Limesand, KH. Sensitivity of salivary glands to radiation: from animal models to therapies. J Dent Res. 2009;88(10):894–903.
Google Scholar | SAGE Journals9. Marmary, Y, Adar, R, Gaska, S, Wygoda, A, Maly, A, Cohen, J, Eliashar, R, Mizrachi, L, Orfaig-Geva, C, Baum, BJ, Rose-John, S, Galun, E, Axelrod, JH. Radiation-induced loss of salivary gland function is driven by cellular senescence and prevented by IL6 modulation. Cancer Res. 2016;76(5):1170–80.
Google Scholar10. Nam, K, Maruyama, CL, Trump, BG, Buchmann, L, Hunt, JP, Monroe, MM, Baker, OJ. Post-irradiated human submandibular glands display high collagen deposition, disorganized cell junctions, and an increased number of adipocytes. J Histochem Cytochem. 2016;64(6):343–52.
Google Scholar11. Emmerson, E, May, AJ, Berthoin, L, Cruz-Pacheco, N, Nathan, S, Mattingly, AJ, Chang, JL, Ryan, WR, Tward, AD, Knox, SM. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol Med. 2018;10(3):e8051.
Google Scholar | Crossref | Medline12. Porter, SR, Scully, C, Hegarty, AM. An update of the etiology and management of xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97(1):28–46.
Google Scholar | Crossref13. Silvestre, FJ, Minguez, MP, Sune-Negre, JM. Clinical evaluation of a new artificial saliva in spray form for patients with dry mouth. Med Oral Patol Oral Cir Bucal. 2009;14(1):E8–11.
Google Scholar14. Dost, F, Farah, CS. Stimulating the discussion on saliva substitutes: a clinical perspective. Aust Dent J. 2013;58(1):11–7.
Google Scholar15. Takakura, K, Takaki, S, Takeda, I, Hanaue, N, Kizu, Y, Tonogi, M, Yamane, GY. Effect of cevimeline on radiation-induced salivary gland dysfunction and AQP5 in submandibular gland in mice. Bull Tokyo Dent Coll. 2007;48(2):47–56.
Google Scholar | Crossref16. Braga, MA, Tarzia, O, Bergamaschi, CC, Santos, FA, Andrade, ED, Groppo, FC. Comparison of the effects of pilocarpine and cevimeline on salivary flow. Int J Dent Hyg. 2009;7(2):126–30.
Google Scholar17. Tajiri, S, Kanamaru, T, Kamada, M, Konno, T, Nakagami, H. Dosage form design and in vitro/in vivo evaluation of cevimeline extended-release tablet formulations. Int J Pharm. 2010;383(1–2):99–105.
Google Scholar18. Arita, M, Bianchini, F, Aliberti, J, Sher, A, Chiang, N, Hong, S, Yang, R, Petasis, NA, Serhan, CN. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med. 2005;201(5):713–22.
Google Scholar19. Arita, M, Ohira, T, Sun, YP, Elangovan, S, Chiang, N, Serhan, CN. Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol. 2007;178(6):3912–7.
Google Scholar20. Krishnamoorthy, S, Recchiuti, A, Chiang, N, Yacoubian, S, Lee, CH, Yang, R, Petasis, NA, Serhan, CN. Resolvin D1 binds human phagocytes with evidence for proresolving receptors. Proc Natl Acad Sci U S A. 2010;107(4):1660–5.
Google Scholar21. Serhan, CN, Chiang, N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–40.
Google Scholar22. Serhan, CN. A search for endogenous mechanisms of anti-inflammation uncovers novel chemical mediators: missing links to resolution. Histochem Cell Biol. 2004;122(4):305–21.
Google Scholar23. Bartel-Friedrich, S, Friedrich, RE, Lautenschläger, C, Moll, R. Immunohistochemical detection of extracellular matrix proteins in the irradiated rat submandibular gland. Laryngorhinootologie. 1999;78(9):500–7.
Google Scholar24. Friedrich, RE, Bartel-Friedrich, S, Holzhausen, HJ, Lautenschläger, C. The effect of external fractionated irradiation on the distribution pattern of extracellular matrix proteins in submandibular salivary glands of the rat. J Craniomaxillofac Surg. 2002;30(4):246–54.
Google Scholar25. Odusanwo, O, Chinthamani, S, McCall, A, Duffey, ME, Baker, OJ. Resolvin D1 prevents TNF-α-mediated disruption of salivary epithelial formation. Am J Physiol Cell Physiol. 2012;302(9):C1331–45.
Google Scholar26. Nelson, JW, Leigh, NJ, Mellas, RE, McCall, AD, Aguirre, A, Baker, OJ. ALX/FPR2 receptor for RvD1 is expressed and functional in salivary glands. Am J Physiol Cell Physiol. 2014;306(2):C178–85.
Google Scholar27. Wang, CS, Maruyama, CL, Easley, JT, Trump, BG, Baker, OJ. AT-RvD1 promotes resolution of inflammation in NOD/ShiLtJ mice. Sci Rep. 2017;7:45525.
Google Scholar28. Dean, S, Wang, C-S, Nam, K, Maruyama, CL, Trump, BG, Baker, OJ. Aspirin Triggered Resolvin D1 reduces inflammation and restores saliva secretion in a Sjögren’s syndrome mouse model. Rheumatology (Oxford). 2019;58(7):1285–92.
Google Scholar29. Nair, JJ, Singh, TP. Sjogren’s syndrome: review of the aetiology, pathophysiology & potential therapeutic interventions. J Clin Exp Dent. 2017;9(4):e584–9.
Google Scholar30. Denham, JW, Hauer-Jensen, M. The radiotherapeutic injury: a complex “wound.” Radiother Oncol. 2002;63(2):129–45.
Google Scholar31. Meziani, L, Deutsch, E, Mondini, M. Macrophages in radiation injury: a new therapeutic target. Oncoimmunology. 2018;7(10):e1494488.
Google Scholar32. Tomasek, JJ, Gabbiani, G, Hinz, B, Chaponnier, C, Brown, RA. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 2002;3(5):349–63.
Google Scholar33. Yarnold, J, Brotons, MC. Pathogenetic mechanisms in radiation fibrosis. Radiother Oncol. 2010;97(1):149–61.
Google Scholar34. Lombaert, IMA, Patel, VN, Jones, CE, Villier, DC, Canada, AE, Moore, MR, Berenstein, E, Zheng, C, Goldsmith, CM, Chorini, JA, Martin, D, Zourelias, L, Trombetta, MG, Edwards, PC, Meyer, K, Ando, D, Passineau, MJ, Hoffman, MP. CERE-120 prevents irradiation-induced hypofunction and restores immune homeostasis in porcine salivary glands. Mol Ther Methods Clin Dev. 2020;18:839–55.
Google Scholar35. Luitje, ME, Israel, A-K, Cummings, MA, Giampoli, EJ, Allen, PD, Newlands, SD, Ovitt, CE. Long-term maintenance of acinar cells in human submandibular glands after radiation therapy. Int J Radiat Oncol Biol Phys. 2021;109(4):1028–39.
Google Scholar36. Li, M, Luan, F, Zhao, Y, Hao, H, Zhou, Y, Han, W, Fu, X. Epithelial-mesenchymal transition: an emerging target in tissue fibrosis. Exp Biol Med (Maywood). 2016;241(1): 1–13.
Google Scholar | SAGE Journals37. Zhang, X, Yun, JS, Han, D, Yook, JI, Kim, HS, Cho, ES. TGF-β pathway in salivary gland fibrosis. Int J Mol Sci. 2020;21(23):9138.
Google Scholar | Crossref38. De la Cal, C, Fernández-Solari, J, Mohn, C, Prestifilippo, J, Pugnaloni, A, Medina, V, Elverdin, J. Radiation produces irreversible chronic dysfunction in the submandibular glands of the rat. Open Dent J. 2012;6:8–13.
Google Scholar | Crossref | Medline39. Chibly, AM, Nguyen, T, Limesand, KH. Palliative care for salivary gland dysfunction highlights the need for regenerative therapies: a review on radiation and salivary gland stem cells. J Palliat Care Med. 2014;4(4):1000180.
Google Scholar40. Devosse, T, Guillabert, A, Haene, N, Berton, A, De Nadai, P, Noel, S, Brait, M, Franssen, J-D, Sozzani, S, Salmon, I, Parmentier, M. Formyl peptide receptor-like 2 is expressed and functional in plasmacytoid dendritic cells, tissue-specific macrophage subpopulations, and eosinophils. J Immunol. 2009;182(8):4974–84.
Google Scholar41. Chen, K, Liu, M, Liu, Y, Yoshimura, T, Shen, W, Le, Y, Durum, S, Gong, W, Wang, C, Gao, JL, Murphy, PM, Wang, JM. Formylpeptide receptor-2 contributes to colonic epithelial homeostasis, inflammation, and tumorigenesis. J Clin Invest. 2013;123(4):1694–704.
Google Scholar42. VanCompernolle, SE, Clark, KL, Rummel, KA, Todd, SC. Expression and function of formyl peptide receptors on human fibroblast cells. J Immunol. 2003;171(4):2050–6.
Google Scholar43. Ye, RD, Cavanagh, SL, Quehenberger, O, Prossnitz, ER, Cochrane, CG. Isolation of a cDNA that encodes a novel granulocyte N-formyl peptide receptor. Biochem Biophys Res Commun. 1992;184(2):582–9.
Google Scholar44. Maderna, P, Cottell, DC, Toivonen, T, Dufton, N, Dalli, J, Perretti, M, Godson, C. FPR2/ALX receptor expression and internalization are critical for lipoxin A4 and annexin-derived peptide-stimulated phagocytosis. Faseb J. 2010;24(11):4240–9.
Google Scholar45. Hachicha, M, Pouliot, M, Petasis, NA, Serhan, CN. Lipoxin (LX)A4 and aspirin-triggered 15-epi-LXA4 inhibit tumor necrosis factor 1alpha-initiated neutrophil responses and trafficking: regulators of a cytokine-chemokine axis. J Exp Med. 1999;189(12):1923–30.
Google Scholar46. Liang, TS, Wang, J-M, Murphy, PM, Gao, J-L. Serum amyloid a is a chemotactic agonist at FPR2, a low-affinity N-formylpeptide receptor on mouse neutrophils. Biochem Biophys Res Commun. 2000;270(2):331–5.
Google Scholar47. Kim, H, Park, S-H, Han, SY, Lee, Y-S, Cho, J, Kim, J-M. LXA(4)-FPR2 signaling regulates radiation-induced pulmonary fibrosis via crosstalk with TGF-β/Smad signaling. Cell Death Dis. 2020;11(8):653.
Google Scholar48. Park, GT, Kwon, YW, Lee, TW, Kwon, SG, Ko, HC, Kim, MB, Kim, JH. Formyl peptide receptor 2 activation ameliorates dermal fibrosis and inflammation in bleomycin-induced scleroderma. Front Immunol. 2019;10:2095.
Google Scholar49. Norling, LV, Dalli, J, Flower, RJ, Serhan, CN, Perretti, M. Resolvin D1 limits polymorphonuclear leukocyte recruitment to inflammatory loci: receptor-dependent actions. Arterioscler Thromb Vasc Biol. 2012;32(8):1970–8.
Google Scholar50. Clària, J, Dalli, J, Yacoubian, S, Gao, F, Serhan, CN. Resolvin D1 and resolvin D2 govern local inflammatory tone in obese fat. J Immunol. 2012;189(5):2597–605.
Google Scholar51. Sansbury, BE, Spite, M. Resolution of acute inflammation and the role of resolvins in immunity, thrombosis, and vascular biology. Circ Res. 2016;119(1):113–30.
Google Scholar52. Lee, HJ, Park, MK, Lee, EJ, Lee, CH. Resolvin D1 inhibits TGF-β1-induced epithelial mesenchymal transition of A549 lung cancer cells via lipoxin A4 receptor/formyl peptide receptor 2 and GPR32. Int J Biochem Cell Biol. 2013;45(12):2801–7.
Google Scholar53. Yang, P, Chen, S, Zhong, G, Wang, Y, Kong, W, Wang, Y. ResolvinD1 attenuates high-mobility group box 1-induced epithelial-to-mesenchymal transition in nasopharyngeal carcinoma cells. Exp Biol Med (Maywood). 2019;244(18):1608–18.
Google Scholar54. Samson, M, Edinger, AL, Stordeur, P, Rucker, J, Verhasselt, V, Sharron, M, Govaerts, C, Mollereau, C, Vassart, G, Doms, RW, Parmentier, M. ChemR23, a putative chemoattractant receptor, is expressed in monocyte-derived dendritic cells and macrophages and is a coreceptor for SIV and some primary HIV-1 strains. Eur J Immunol. 1998;28(5):1689–700.
Google Scholar55. Kaur, J, Adya, R, Tan, BK, Chen, J, Randeva, HS. Identification of chemerin receptor (ChemR23) in human endothelial cells: chemerin-induced endothelial angiogenesis. Biochem Biophys Res Commun. 2010;391(4):1762–8.
Google Scholar56. Goralski, KB, McCarthy, TC, Hanniman, EA, Zabel, BA, Butcher, EC, Parlee, SD, Muruganandan, S, Sinal, CJ. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J Biol Chem. 2007;282(38):28175–88.
Google Scholar57. Freire, MO, Dalli, J, Serhan, CN, Van Dyke, TE. Neutrophil resolvin E1 receptor expression and function in type 2 diabetes. J Immunol. 2017;198(2):718–28.
Google Scholar58. Mocker, A, Hilgers, KF, Cordasic, N, Wachtveitl, R, Menendez-Castro, C, Woelfle, J, Hartner, A, Fahlbusch, FB. Renal chemerin expression is induced in models of hypertensive nephropathy and glomerulonephritis and correlates with markers of inflammation and fibrosis. Int J Mol Sci. 2019;20(24):6240.
Google Scholar59. Wang, X, Guo, J, Wu, Q, Niu, C, Cheng, G, Liu, D, Liu, Z, Zhao, Z, Xiao, J. Chemerin/chemR23 association with endothelial-mesenchymal transition in diabetic nephropathy. Int J Clin Exp Pathol. 2017;10(7):7408–16.
Google Scholar60. Ford-Hutchinson, AW, Bray, MA, Doig, MV, Shipley, ME, Smith, MJ. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980;286(5770):264–5.
Google Scholar61. James, AJ, Penrose, JF, Cazaly, AM, Holgate, ST, Sampson, AP. Human bronchial fibroblasts express the 5-lipoxygenase pathway. Respir Res. 2006;7(1):102.
Google Scholar62. Xiong, Y, Cui, X, Li, W, Lv, J, Du, L, Mi, W, Li, H, Chen, Z, Leng, Q, Zhou, H, He, R. BLT1 signaling in epithelial cells mediates allergic sensitization via promotion of IL-33 production. Allergy. 2019;74(3):495–506.
Google Scholar63. Greenwell-Wild, T, Moutsopoulos, NM, Gliozzi, M, Kapsogeorgou, E, Rangel, Z, Munson, PJ, Moutsopoulos, HM, Wahl, SM. Chitinases in the salivary glands and circulation of patients with Sjögren’s syndrome: macrophage harbingers of disease severity. Arthritis Rheum. 2011;63(10):3103–15.
Google Scholar64. Horii, Y, Nakaya, M, Ohara, H, Nishihara, H, Watari, K, Nagasaka, A, Nakaya, T, Sugiura, Y, Okuno, T, Koga, T, Tanaka, A, Yokomizo, T, Kurose, H. Leukotriene B(4) receptor 1 exacerbates inflammation following myocardial infarction. Faseb J. 2020;34(6):8749–63.
Google Scholar65. El Kebir, D, Gjorstrup, P, Filep, JG. Resolvin E1 promotes phagocytosis-induced neutrophil apoptosis and accelerates resolution of pulmonary inflammation. Proc Natl Acad Sci U S A. 2012;109(37):14983–8.
Google Scholar66. Kamata, M, Amano, H, Ito, Y, Fujita, T, Otaka, F, Hosono, K, Kamata, K, Takeuchi, Y, Yokomizo, T, Shimizu, T, Majima, M. Role of the high-affinity leukotriene B4 receptor signaling in fibrosis after unilateral ureteral obstruction in mice. PLoS ONE. 2019;14(2):e0202842.
Google Scholar | Crossref | Medline67. Lv, J, Xiong, Y, Li, W, Yang, W, Zhao, L, He, R. BLT1 mediates bleomycin-induced lung fibrosis independently of neutrophils and CD4+ T cells. J Immunol. 2017;198(4):1673–84.
Google Scholar

留言 (0)

沒有登入
gif