Feminising Wolbachia disrupt Armadillidium vulgare Insulin‐like signalling pathway

The endosymbiont Wolbachia feminizes male isopods by making them refractory to the insulin-like masculinising hormone, which shunts the autocrine development of the androgenic glands. It was therefore proposed that Wolbachia silences the IR receptors, either by preventing their expression or by inactivating them. We describe here the two IR paralogs of Armadillidium vulgare. They displayed a conventional structure and belonged to a family widespread among isopods. Av-IR1 displayed an ubiquist expression, whereas the expression of Av-IR2 was restricted to the gonads. Both were constitutively expressed in males and females and throughout development. However upon silencing, altered gland physiology and gene expression therein suggested antagonistic roles for Av-IR1 (androinhibiting) and Av-IR2 (androstimulating). They may function in tandem with regulating neurohormones, as a conditional platform that conveys insulin signalling. Wolbachia infection did not alter their expression patterns: leaving the IRs unscathed, the bacteria would suppress the secretion of the neurohormones, thus inducing body-wide IR deactivation and feminization. Adult males injected with Wolbachia acquired an intersexed physiology. Their phenotypes and gene expressions mirrored the silencing of Av-IR1 only, suggesting that imperfect feminisation stems from a flawed invasion of the androstimulating centre, whereas in fully feminized males invasion would be complete in early juveniles.

This article is protected by copyright. All rights reserved.

留言 (0)

沒有登入
gif