Ion channels and pain in Fabry disease

1. Rozenfeld, PA, Ceci, R, Roa, N, Kisinovsky, I. The continuous challenge of diagnosing patients with Fabry disease in Argentina: genotype, experiences, anecdotes, and new learnings. J Inborn Errors Metab Screen 2015; 3. doi: 10.1177/2326409815613806
Google Scholar | SAGE Journals2. Winchester B, Young E. Biochemical and genetic diagnosis of Fabry disease. In: Mehta A, Beck M and Sunder-Plassmann G (eds) Fabry Disease: Perspectives from 5 Years of FOS. Oxford: Oxford PharmaGenesis, 2006. Chapter 18. PMID: 21290697. https://pubmed.ncbi.nlm.nih.gov/21290697/
Google Scholar3. Saito, S, Ohno, K, Sakuraba, H. Fabry-database.org: database of the clinical phenotypes, genotypes and mutant α-galactosidase a structures in Fabry disease. J Hum Genet 2011; 56: 467–468.
Google Scholar | Crossref | Medline4. Schuller, Y, Linthorst, GE, Hollak, CEM, Van Schaik, IN, Biegstraaten, M. Pain management strategies for neuropathic pain in Fabry disease – a systematic review. BMC Neurol 2016; 16: 1–10.
Google Scholar | Medline5. Askari, H, Kaneski, CR, Semino-Mora, C, Desai, P, Ang, A, Kleiner, DE, Perlee, LT, Quezado, M, Spollen, LE, Wustman, BA, Schiffmann, R. Cellular and tissue localization of globotriaosylceramide in Fabry disease. Virchows Arch 2007; 451: 823–834.
Google Scholar | Crossref | Medline | ISI6. Hofmann, L, Hose, D, Grießhammer, A, Blum, R, Döring, F, Dib-Hajj, S, Waxman, S, Sommer, C, Wischmeyer, E, Üçeyler, N. Characterization of small fiber pathology in a mouse model of Fabry disease. Elife 2018; 7: 1–21.
Google Scholar | Crossref7. Kaye, EM, Kolodny, EH, Logigian, EL, Ullman, MD. Nervous system involvement in Fabry’s disease: clinicopathological and biochemical correlation. Ann Neurol 1988; 23: 505–509.
Google Scholar | Crossref | Medline8. Aerts, JM, Groener, JE, Kuiper, S, Donker-Koopman, WE, Strijland, A, Ottenhoff, R, van Roomen, C, Mirzaian, M, Wijburg, FA, Linthorst, GE, Vedder, AC, Rombach, SM, Cox-Brinkman, J, Somerharju, P, Boot, RG, Hollak, CE, Brady, RO, Poorthuis, BJ. Elevated globotriaosylsphingosine is a hallmark of Fabry disease. Proc Natl Acad Sci U S A 2008; 105: 2812–2817.
Google Scholar | Crossref | Medline9. Gibas, AL, Klatt, R, Johnson, J, Clarke, JTRR, Katz, J. A survey of the pain experienced by males and females with Fabry disease. Pain Res Manag 2006; 11: 828964.
Google Scholar | Crossref10. Colloca, L, Ludman, T, Bouhassira, D, Baron, R, Dickenson, AH, Yarnitsky, D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C . Neuropathic pain. Nat Rev Dis Prim 2017; 3: 17002.
Google Scholar | Crossref | Medline11. Biegstraaten, M, Linthorst, GE, Van Schaik, IN, Hollak, CEM. Fabry disease: a rare cause of neuropathic pain. Curr Pain Headache Rep 2013; 17: 365.
Google Scholar | Crossref | Medline12. Politei, JM, Bouhassira, D, Germain, DP, Goizet, C, Guerrero-Sola, A, Hilz, MJ, Hutton, EJ, Karaa, A, Liguori, R, Üçeyler, N, Zeltzer, LK, Burlina, A. Pain in Fabry disease: practical recommendations for diagnosis and treatment. CNS Neurosci Ther 2016; 22: 568–576.
Google Scholar | Crossref | Medline13. Politei, JM, Durand, C, Schenone, AB. Small fiber neuropathy in Fabry disease: a review of pathophysiology and treatment. J Inborn Errors Metab Screen 2016; 4. doi: 10.1177/2326409816661351
Google Scholar | SAGE Journals14. Üçeyler, N, Ganendiran, S, Kramer, D, Sommer, C. Characterization of pain in Fabry disease. Clin J Pain 2014; 30: 915–920.
Google Scholar | Crossref | Medline15. Birklein, F. Mechanisms of neuropathic pain and their importance in Fabry disease. Acta Paediatr Suppl 2002; 91: 34–37.
Google Scholar | Crossref | Medline16. Campbell, JN, Meyer, RA. Mechanisms of neuropathic pain. Neuron 2006; 52: 77–92.
Google Scholar | Crossref | Medline | ISI17. Namer, B, Ørstavik, K, Schmidt, R, Mair, N, Petter, I. Changes in ionic conductance signature of nociceptive neurons underlying Fabry disease phenotype. Front Neurol 2017; 8: 1–18.
Google Scholar18. Rozenfeld, P, Feriozzi, S. Contribution of inflammatory pathways to Fabry disease pathogenesis. Mol Genet Metab 2017; 122: 19–27.
Google Scholar | Crossref | Medline19. Forstenpointner, J, Sendel, M, Moeller, P, Reimer, M, Canaan-Kühl, S, Gaedeke, J, Rehm S, Hüllemann P, Gierthmühlen J, Baron R. Bridging the gap between vessels and nerves in Fabry disease. Front Neurosci 2020; 14: 448.
Google Scholar | Crossref | Medline20. Slanzi, A, Iannoto, G, Rossi, B, Zenaro, E, Constantin, G. In vitro models of neurodegenerative diseases. Front Cell Dev Biol 2020; 8: 328.
Google Scholar | Crossref | Medline21. Benam, KH, Dauth, S, Hassell, B, Herland, A, Jain, A, Jang, K-J, Karalis, K, Kim, HJ, MacQueen, L, Mahmoodian, R, Musah, S, Torisawa, Y-s, van der Meer, AD, Villenave, R, Yadid, M, Parker, KK, Ingber, DE. Engineered in vitro disease models. Annu Rev Pathol 2015; 10: 195–262.
Google Scholar | Crossref | Medline | ISI22. Ye, L, Swingen, C, Zhang, J. Induced pluripotent stem cells and their potential for basic and clinical sciences. Curr Cardiol Rev 2013; 9: 63–72.
Google Scholar | Medline23. Johnson, DL, Desnick, RJ. Molecular pathology of Fabry’s disease physical and kinetic properties of α-galactosidase a in cultured human endothelial cells. BBA Gen Subj 1978; 538: 195–204.
Google Scholar | Crossref | Medline24. Hasholt, L, Sørensen, SA. Lysosomal α-galactosidase in endothelial cell cultures established from a Fabry hemizygous and normal umbilical veins. Hum Genet 1986; 72: 72–76.
Google Scholar | Crossref | Medline25. Inagaki, M, Katsumoto, T, Nanba, E, Ohno, K, Suehiro, S, Takeshita, K. Lysosomal glycosphingolipid storage in chloroquine-induced α-galactosidase-deficient human endothelial cells with transformation by simian virus 40: in vitro model of Fabry disease. Acta Neuropathol 1993; 85: 272–279.
Google Scholar | Crossref | Medline26. Shu, L, Murphy, HS, Cooling, L, Shayman, JA. An in vitro model of Fabry disease. J Am Soc Nephrol 2005; 16: 2636–2645.
Google Scholar | Crossref | Medline27. Shen, JS, Meng, XL, Schiffmann, R, Brady, RO, Kaneski, CR. Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab 2007; 92: 137–144.
Google Scholar | Crossref | Medline | ISI28. Shen JS, Meng XL, Schiffmann R, Brady RO, Kaneski CR. Establishment and characterization of Fabry disease endothelial cells with an extended lifespan. Mol Genet Metab 2007; 92: 137–144.
Google Scholar29. Ruiz De Garibay, AP, Solinís, MA, Del Pozo-Rodríguez, A, Apaolaza, PS, Shen, JS, Rodríguez-Gascón, A. Solid lipid nanoparticles as non-viral vectors for gene transfection in a cell model of Fabry disease. J Biomed Nanotechnol 2015; 11: 500–511.
Google Scholar | Crossref | Medline30. Takenaka, T, Hendrickson, CS, Tworek, DM, Tudor, M, Schiffmann, R, Brady, RO, Medin, JA. Enzymatic and functional correction along with long-term enzyme secretion from transduced bone marrow hematopoietic stem/progenitor and stromal cells derived from patients with Fabry disease. Exp Hematol 1999; 27: 1149–1159.
Google Scholar | Crossref | Medline31. Qin, G, Takenaka, T, Telsch, K, Kelley, L, Howard, T, Levade, T, Deans, R, Howard, BH, Malech, HL, Brady, RO, Medin, JA. Preselective gene therapy for Fabry disease. Proc Natl Acad Sci U S A 2001; 98: 3428–3433.
Google Scholar | Crossref | Medline32. Medin, JA, Tudor, M, Simovitch, R, Quirk, JM, Jacobson, S, Murray, GJ, Brady, RO. Correction in trans for Fabry disease: expression, secretion, and uptake of a-galactosidase a in patient-derived cells driven by a high-titer recombinant retroviral vector. Proc Natl Acad Sci USA 1996; 93: 7917–7922.
Google Scholar | Crossref | Medline33. Jenkinson, SF, Fleet, GWJ, Nash, RJ, Koike, Y, Adachi, I, Yoshihara, A, Morimoto, K, Izumori, K, Kato, A. Looking-glass synergistic pharmacological chaperones: DGJ and L-DGJ from the enantiomers of tagatose. Org Lett 2011; 13: 4064–4067.
Google Scholar | Crossref | Medline34. Porto, C, Pisani, A, Rosa, M, Acampora, E, Avolio, V, Tuzzi, MR, Visciano, B, Gagliardo, C, Materazzi, S, la Marca, G, Andria, G, Parenti, G. Synergy between the pharmacological chaperone 1-deoxygalactonojirimycin and the human recombinant alpha-galactosidase a in cultured fibroblasts from patients with Fabry disease. J Inherit Metab Dis 2012; 35: 513–520.
Google Scholar | Crossref | Medline35. Lakomá, J, Rimondini, R, Montiel, AF, Donadio, V, Liguori, R, Caprini, M. Increased expression of trpv1 in peripheral terminals mediates thermal nociception in Fabry disease mouse model. Mol Pain 2016; 12: 174480691666372–174480691666316.
Google Scholar | SAGE Journals36. Welford, RWD, Mühlemann, A, Garzotti, M, Rickert, V, Groenen, PMA, Morand, O, Üçeyler, N, Probst, MR. Glucosylceramide synthase inhibition with lucerastat lowers globotriaosylceramide and lysosome staining in cultured fibroblasts from Fabry patients with different mutation types. Hum Mol Genet 2018; 27: 3392–3403.
Google Scholar | Crossref | Medline37. Oliván-Viguera, A, Lozano-Gerona, J, de Frutos, LL, Cebolla, JJ, Irún, P, Abarca-Lachen, E, García-Malinis AJ, García-Otín ÁL, Gilaberte Y, Giraldo P, Köhler R. Inhibition of intermediate-conductance calcium-activated K channel (KCa3.1) and fibroblast mitogenesis by α-linolenic acid and alterations of channel expression in the lysosomal storage disorders, Fabry disease, and Niemann pick C. Front Physiol 2017; 8: 1–10.
Google Scholar | Crossref | Medline38. Andreotti G, Citro V, De Crescenzo A, Orlando P, Cammisa M, Correra A, Cubellis MV. Therapy of Fabry disease with pharmacological chaperones: from in silico predictions to in vitro tests. Orphanet J Rare Dis 2011; 6: 66.
Google Scholar39. Fan, JQ, Ishii, S, Asano, N, Suzuki, Y. Accelerated transport and maturation of lysosomal α-galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nat Med 1999; 5: 112–115.
Google Scholar | Crossref | Medline | ISI40. Benjamin, ER, Flanagan, JJ, Schilling, A, Chang, HH, Agarwal, L, Katz, E, Wu, X, Pine, C, Wustman, B, Desnick, RJ, Lockhart, DJ, Valenzano, KJ. The pharmacological chaperone 1-deoxygalactonojirimycin increases α-galactosidase a levels in Fabry patient cell lines. J Inherit Metab Dis 2009; 32: 424–440.
Google Scholar | Crossref | Medline41. Kase, R, Bierfreund, U, Klein, A, Kolter, T, Utsumi, K, Itoh, K, Sandhoff, K, Sakuraba, H. Characterization of two α-galactosidase mutants (Q279E and R301Q) found in an atypical variant of Fabry disease. Biochim Biophys Acta Mol Basis Dis 2000; 1501: 227–235.
Google Scholar | Crossref42. Tajima, Y, Kawashima, I, Tsukimura, T, Sugawara, K, Kuroda, M, Suzuki, T, Togawa, T, Chiba, Y, Jigami, Y, Ohno, K, Fukushige, T, Kanekura, T, Itoh, K, Ohashi, T, Sakuraba, H. Use of a modified α-N-Acetylgalactosaminidase in the development of enzyme replacement therapy for Fabry disease. Am J Hum Genet 2009; 85: 569–580.
Google Scholar | Crossref | Medline43. Tian, W, Ye, Z, Wang, S, Schulz, MA, Van Coillie, J, Sun, L, Chen, Y-H, Narimatsu, Y, Hansen, L, Kristensen, C, Mandel, U, Bennett, EP, Jabbarzadeh-Tabrizi, S, Schiffmann, R, Shen, J-S, Vakhrushev, SY, Clausen, H, Yang, Z. The glycosylation design space for recombinant lysosomal replacement enzymes produced in CHO cells. Nat Commun 2019; 10: 1785.
Google Scholar | Crossref | Medline44. Song HY, Chiang HC, Tseng WL, et al. Using CRISPR/Cas9-Mediated GLA Gene Knockout as an In Vitro Drug Screening Model for Fabry Disease. Int J Mol Sci 2016; 17: 2089.
Google Scholar45. Benjamin ER, Della Valle MC, Wu X, Katz E, Pruthi F, Bond S, Bronfin B, Williams H, Yu J, Bichet DG, Germain DP, Giugliani R, Hughes D, Schiffmann R, Wilcox WR, Desnick RJ, Kirk J, Barth J, Barlow C, Valenzano KJ, Castelli J, Lockhart DJ. The validation of pharmacogenetics for the identification of Fabry patients to be treated with migalastat. Genet Med 2017; 19: 430–438.
Google Scholar46. Biancini, GB, Morás, AM, Reinhardt, LS, Busatto, FF, de Moura Sperotto, ND, Saffi, J, Moura, DJ, Giugliani, R, Vargas, CR. Globotriaosylsphingosine induces oxidative DNA damage in cultured kidney cells. Nephrology (Carlton) 2017; 22: 490–493.
Google Scholar | Crossref | Medline47. Salinas, LCC, Rozenfeld, P, Gatto, RG, Reisin, RC, Uchitel, OD, Weissmann, C. Upregulation of ASIC1a channels in an in vitro model of Fabry disease. Neurochem Int 2020; 140: 104824.
Google Scholar | Crossref | Medline48. Liebau, MC, Braun, F, Höpker, K, Weitbrecht, C, Bartels, V, Müller, R-U, Brodesser, S, Saleem, MA, Benzing, T, Schermer, B, Cybulla, M, Kurschat, CE. Dysregulated autophagy contributes to podocyte damage in Fabry’s disease. PLoS One 2013; 8: e63506.
Google Scholar | Crossref | Medline49. Pereira, EM, Labilloy, A, Eshbach, ML, Roy, A, Subramanya, AR, Monte, S, Labilloy, G, Weisz, OA. Characterization and phosphoproteomic analysis of a human immortalized podocyte model of Fabry disease generated using CRISPR/Cas9 technology. Am J

留言 (0)

沒有登入
gif