Synergistic effect of genetic polymorphisms in TLR6 and TLR10 genes on the risk of pulmonary tuberculosis in a Moldavian population

1. Lawn, SD, Zumla, AI. Tuberculosis. Lancet 2011; 378: 57–72.
Google Scholar | Crossref2. Orlova, M, Schurr, E. Human genomics of Mycobacterium tuberculosis infection and disease. Curr Genet Med Rep 2017; 5: 125–131.
Google Scholar | Crossref | Medline3. Stein, CM, Sausville, L, Wejse, C, et al. Genomics of human pulmonary tuberculosis: From genes to pathways. Curr Genet Med Rep 2017; 5: 149–166.
Google Scholar | Crossref | Medline4. Cai, L, Li, Z, Guan, X, et al. The research progress of host genes and tuberculosis susceptibility. Oxid Med Cell Longev 2019; 2019: 9273056.
Google Scholar | Crossref | Medline5. Abel, L, Fellay, J, Haas, DW, et al. Genetics of human susceptibility to active and latent tuberculosis: Present knowledge and future perspectives. Lancet Infect Dis 2018; 18: e64–e75.
Google Scholar | Crossref | Medline6. Varzari, A, Deyneko, IV, Vladei, I, et al. Genetic variation in TLR pathway and the risk of pulmonary tuberculosis in a Moldavian population. Infect Genet Evol 2019; 68: 84–90.
Google Scholar | Crossref | Medline7. Uciechowski, P, Imhoff, H, Lange, C, et al. Susceptibility to tuberculosis is associated with TLR1 polymorphisms resulting in a lack of TLR1 cell surface expression. J Leukoc Biol 2011; 90: 377–388.
Google Scholar | Crossref | Medline8. Naderi, M, Hashemi, M, Mirshekari, H, et al. Toll-like receptor 1 polymorphisms increased the risk of pulmonary tuberculosis in an Iranian population sample. Biomed Environ Sci 2016; 29: 825–828.
Google Scholar | Medline9. Velez, DR, Wejse, C, Stryjewski, ME, et al. Variants in toll-like receptors 2 and 9 influence susceptibility to pulmonary tuberculosis in Caucasians, African-Americans, and West Africans. Hum Genet 2010; 127: 65–73.
Google Scholar | Crossref | Medline10. Oosting, M, Cheng, SC, Bolscher, JM, et al. Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proc Natl Acad Sci U S A 2014; 111: E4478–E4484.
Google Scholar | Crossref | Medline11. Bulat-Kardum, LJ, Etokebe, GE, Lederer, P, et al. Genetic polymorphisms in the Toll-like Receptor 10, Interleukin (IL)17A and IL17F genes differently affect the risk for tuberculosis in Croatian population. Scand J Immunol 2015; 82: 63–69.
Google Scholar | Crossref | Medline12. Sampath, V, Mulrooney, NP, Garland, JS, et al. Toll-like receptor genetic variants are associated with Gram-negative infections in VLBW infants. J Perinatol 2013; 33: 772–777.
Google Scholar | Crossref | Medline13. Hu, CY, Zhang, XA, Meyer, CG, et al. Polymorphism of X-linked CD40 ligand gene associated with pulmonary tuberculosis in the Han Chinese population. Genes Immun 2015; 16: 399–404.
Google Scholar | Crossref | Medline14. Pravica, V, Perrey, C, Stevens, A, et al. A single nucleotide polymorphism in the first intron of the human IFN-g gene: Absolute correlation with a polymorphic CA microsatellite marker of high IFN-g production. Hum Immunol 2000; 61: 863–866.
Google Scholar | Crossref | Medline | ISI15. Wei, Z, Wenhao, S, Yuanyuan, M, et al. A single nucleotide polymorphism in the interferon-γ gene (IFNG +874 T/A) is associated with susceptibility to tuberculosis. Oncotarget 2017; 8: 50415–50429.
Google Scholar | Crossref | Medline16. Correa, PA, Gomez, LM, Cadena, J, et al. Autoimmunity and tuberculosis. Opposite association with TNF polymorphism. J Rheumatol 2005; 32: 219–224.
Google Scholar | Medline17. Elahi, MM, Asotra, K, Matata, BM, et al. Tumor necrosis factor alpha -308 gene locus promoter polymorphism: an analysis of association with health and disease. Biochim Biophys Acta 2009; 1792: 163–172.
Google Scholar | Crossref | Medline | ISI18. de Arellano, ITR, Lara, CS, Espíndola, LMT, et al. Exposure to biomass smoke, cigarettes, and alcohol modifies the association between tumour necrosis factor (-308G/A, -238G/A) polymorphisms and tuberculosis in Mexican carriers. Arch Med Sci 2020; 16: 672–681.
Google Scholar | Crossref | Medline19. Hall, NB, Igo, RP, Malone, LL, et al. Polymorphisms in TICAM2 and IL1B are associated with TB. Genes Immun 2015; 16: 127–133.
Google Scholar | Crossref | Medline20. Turner, DM, Williams, DM, Sankaran, D, et al. An investigation of polymorphism in the interleukin-10 genepromoter. Eur J Immunogenet 1997; 24: 1–8.
Google Scholar | Crossref | Medline21. Areeshi, MY, Mandal, RK, Dar, SA, et al. IL-10 -1082 A>G (rs1800896) polymorphism confers susceptibility to pulmonary tuberculosis in Caucasians but not in Asians and Africans: a meta-analysis. Biosci Rep 2017; 37: BSR20170240.
Google Scholar | Crossref | Medline22. Freĭdin, MB, Rudko, AA, Kolokolova, OV, et al. A comparative analysis of tuberculosis susceptibility genetic make-up in Tuvinians and Russians. Mol Biol (Mosk) 2006; 40: 252–262.
Google Scholar | Crossref | Medline23. Yuan, L, Ke, Z, Guo, Y, et al. NRAMP1 D543N and INT4 polymorphisms in susceptibility to pulmonary tuberculosis: A meta-analysis. Infect Genet Evol 2017; 54: 91–97.
Google Scholar | Crossref | Medline24. Beiranvand, E, Abediankenari, S, Khani, S, et al. G allele at -924 A > G position of FoxP3 gene promoter as a risk factor for tuberculosis. BMC Infect Dis 2017; 17: 673.
Google Scholar | Crossref | Medline25. Uitterlinden, AG, Fang, Y, Van Meurs, JB, et al. Genetics and biology of vitamin D receptor polymorphisms. Gene 2004; 338: 143–156.
Google Scholar | Crossref | Medline | ISI26. Xu, X, Shen, M. Associations between vitamin D receptor genetic variants and tuberculosis: a meta-analysis. Innate Immun 2019; 25: 305–313.
Google Scholar | SAGE Journals | ISI27. Chen, C, Liu, Q, Zhu, L, et al. Vitamin D receptor gene polymorphisms on the risk of tuberculosis, a meta-analysis of 29 case-control studies. PLoS One 2013; 8: e83843.
Google Scholar | Crossref | Medline28. Seshadri, C, Thuong, NT, Mai, NT, et al. A polymorphism in human MR1 is associated with mRNA expression and susceptibility to tuberculosis. Genes Immun 2017; 18: 8–14.
Google Scholar | Crossref | Medline29. World Health Organization . Global tuberculosis report 2019. Geneva: WHO, 2019.
Google Scholar30. Miller, SA, Dykes, DD, Polesky, HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.
Google Scholar | Crossref | Medline | ISI31. Tahara, T, Arisawa, T, Wang, F, et al. Toll-like receptor 2 -196 to 174del polymorphism influences the susceptibility of Japanese people to gastric cancer. Cancer Sci 2007; 98: 1790–1794.
Google Scholar | Crossref | Medline32. Leoratti, FM, Farias, L, Alves, FP, et al. Variants in the toll-like receptor signaling pathway and clinical outcomes of malaria. J Infect Dis 2008; 198: 772–780.
Google Scholar | Crossref | Medline33. Chang, CC, Chow, CC, Tellier, LC, et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience 2015; 4: 7.
Google Scholar | Crossref | Medline34. Barrett, JC, Fry, B, Maller, J, et al. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.
Google Scholar | Crossref | Medline | ISI35. Musani, SK, Shriner, D, Liu, N, et al. Detection of gene x gene interactions in genome-wide association studies of human population data. Hum Hered 2007; 63: 67–84.
Google Scholar | Crossref | Medline36. Abo Alchamlat, S, Farnir, F. KNN-MDR: A learning approach for improving interactions mapping performances in genome wide association studies. BMC Bioinform 2017; 18: 184.
Google Scholar | Crossref | Medline37. Edwards, TL, Turner, SD, Torstenson, ES, et al. A general framework for formal tests of interaction after exhaustive search methods with applications to MDR and MDR-PDT. PLoS One 2010; 5: e9363.
Google Scholar | Crossref | Medline38. Solé, X, Guinó, E, Valls, J, et al. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006; 22: 1928–1929.
Google Scholar | Crossref | Medline | ISI39. Varzari, A, Deyneko, IV, Tudor, E, et al. Polymorphisms of glutathione S-transferase and methylenetetrahydrofolate reductase genes in Moldavian patients with ulcerative colitis: Genotype-phenotype correlation. Meta Gene 2015; 7: 76–82.
Google Scholar | Crossref | Medline40. Varzari, A, Tudor, E, Bodrug, N, et al. Age-specific association of CCL5 gene polymorphism with pulmonary tuberculosis: A case-control study. Genet Test Mol Biomarkers 2018; 22: 281–287.
Google Scholar | Crossref | Medline41. Skol, AD, Scott, LJ, Abecasis, GR, et al. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 2006; 38: 209–213.
Google Scholar | Crossref | Medline | ISI42. Cavalcanti, YV, Brelaz, MC, Neves, JK, et al. Role of TNF-Alpha, IFN-Gamma, and IL-10 in the development of pulmonary tuberculosis. Pulm Med 2012; 2012: 745483.
Google Scholar | Crossref | Medline43. Long, R, Gardam, M. Tumour necrosis factor-alpha inhibitors and the reactivation of latent tuberculosis infection. CMAJ 2003; 168: 1153–1156.
Google Scholar | Medline | ISI44. Wilson, AG, Symons, JA, McDowell, TL, et al. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A 1997; 94: 3195–3199.
Google Scholar | Crossref | Medline | ISI45. Ponomarenko, M, Rasskazov, D, Chadaeva, I, et al. Candidate SNP markers of atherogenesis significantly shifting the affinity of TATA-binding protein for human gene promoters show stabilizing natural selection as a sum of neutral drift accelerating atherogenesis and directional natural selection slowing it. Int J Mol Sci 2020; 21: 1045.
Google Scholar | Crossref46. Fitness, J, Floyd, S, Warndorff, DK, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004; 71: 341–349.
Google Scholar | Crossref | Medline47. Jafari, M, Nasiri, MR, Sanaei, R, et al. The NRAMP1, VDR, TNF-α, ICAM1, TLR2 and TLR4 gene polymorphisms in Iranian patients with pulmonary tuberculosis: A case-control study. Infect Genet Evol 2016; 39: 92–98.
Google Scholar | Crossref | Medline48. Selvaraj, P, Sriram, U, Mathan Kurian, S, et al. Tumour necrosis factor alpha (-238 and -308) and beta gene polymorphisms in pulmonary tuberculosis: Haplotype analysis with HLA-A, B and DR genes. Tuberculosis (Edinb) 2001; 81: 335–341.
Google Scholar | Crossref | Medline49. Delgado, JC, Baena, A, Thim, S, et al. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002; 186: 1463–1468.
Google Scholar | Crossref |

留言 (0)

沒有登入
gif