MR Imaging Contrast Agents

Moon A.M. Singal A.G. Tapper E.B.

Contemporary epidemiology of chronic liver disease and cirrhosis.

Clin Gastroenterol Hepatol. 18: 2650-2666Moura Cunha G. Navin P.J. Fowler K.J. et al.

Quantitative magnetic resonance imaging for chronic liver disease.

Br J Radiol. 94: 20201377Lee H.J. Hong S.B. Lee N.K. et al.

Validation of functional liver imaging scores (FLIS) derived from gadoxetic acid-enhanced MRI in patients with chronic liver disease and liver cirrhosis: the relationship between Child-Pugh score and FLIS.

Eur Radiol. https://doi.org/10.1007/s00330-021-07955-1Brunsing R.L. Chen D.H. Schlein A. et al.

Gadoxetate-enhanced Abbreviated MRI for Hepatocellular Carcinoma Surveillance: Preliminary Experience.

Radiol Imaging Cancer. 1: e190010Feng Z. Zhao H. Guan S. et al.

Diagnostic performance of MRI using extracellular contrast agents versus gadoxetic acid for hepatocellular carcinoma: A systematic review and meta-analysis.

Liver Int. 41: 1117-1128Ayuso C. Rimola J. Vilana R. et al.

Diagnosis and staging of hepatocellular carcinoma (HCC): current guidelines.

Eur J Radiol. 101: 72-81

Liver contrast media for magnetic resonance imaging: interrelations between pharmacokinetics and imaging.

Invest Radiol. 28: 753-761Tang A. Abukasm K. Moura Cunha G. et al.

Imaging of hepatocellular carcinoma: a pilot international survey.

Abdom Radiol (NY). 46: 205-215Hao D. Ai T. Goerner F. et al.

MRI contrast agents: basic chemistry and safety.

J Magn Reson Imaging. 36: 1060-1071Gandhi S.N. Brown M.A. Wong J.G. et al.

MR contrast agents for liver imaging: what, when.

How Radiographics. 26: 1621-1636Choi J.Y. Lee J.M. Sirlin C.B.

CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features.

Radiology. 273: 30-50

Available at: https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/LI-RADS/CT-MRI-LI-RADS-v2018, Accessed April 29, 2021.

Kim C.K. Lim J.H. Park C.K. et al.

Neoangiogenesis and sinusoidal capillarization in hepatocellular carcinoma: correlation between dynamic CT and density of tumor microvessels.

Radiology. 237: 529-534An J.Y. Peña M.A. Cunha G.M. et al.

Abbreviated MRI for Hepatocellular Carcinoma Screening and Surveillance.

Radiographics. 40: 1916-1931Chernyak V. Fowler K.J. Kamaya A. et al.

Liver Imaging Reporting and Data System (LI-RADS) Version 2018: Imaging of Hepatocellular Carcinoma in At-Risk Patients.

Radiology. 289: 816-830Tang A. Bashir M.R. Corwin M.T. et al.

LI-RADS Evidence Working Group. Evidence Supporting LI-RADS Major Features for CT- and MR Imaging-based Diagnosis of Hepatocellular Carcinoma: A Systematic Review.

Radiology. 286: 29-48Yim J.H. Kim Y.K. Min J.H. et al.

Diagnosis of recurrent HCC: intraindividual comparison of gadoxetic acid MRI and extracellular contrast-enhanced MRI.

Abdom Radiol (NY). 44: 2366-2376Min J.H. Kim J.M. Kim Y.K. et al.

Prospective intraindividual comparison of magnetic resonance imaging with gadoxetic acid and extracellular contrast for diagnosis of hepatocellular carcinomas using the liver imaging reporting and data system.

Hepatology. 68: 2254-2266Shah M.R. Flusberg M. Paroder V. et al.

Transient arterial phase respiratory motion-related artifact in MR imaging of the liver: an analysis of four different gadolinium-based contrast agents.

Clin Imaging. 41: 23-27Schalkx H.J. van Stralen M. Coenegrachts K. et al.

Liver perfusion in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI): comparison of enhancement in Gd-BT-DO3A and Gd-EOB-DTPA in normal liver parenchyma.

Eur Radiol. 24: 2146-2156Vernuccio F. Cannella R. Gozzo C. et al.

Hepatic enhancement in cirrhosis in the portal venous phase: what are the differences between gadoxetate disodium and gadobenate dimeglumine?.

Abdom Radiol (NY). 45: 2409-2417Lee S.E. An C. Hwang S.H. et al.

Extracellular contrast agent-enhanced MRI: 15-min delayed phase may improve the diagnostic performance for hepatocellular carcinoma in patients with chronic liver disease.

Eur Radiol. 28: 1551-1559Santillan C. Fowler K. Kono Y. et al.

LI-RADS major features: CT, MRI with extracellular agents, and MRI with hepatobiliary agents.

Abdom Radiol (NY). 43: 75-81Cerny M. Bergeron C. Billiard J.S. et al.

LI-RADS for MR imaging diagnosis of hepatocellular carcinoma: performance of major and ancillary features.

Radiology. 288: 118-128Kim D.W. Choi S.H. Kim S.Y. et al.

Diagnostic performance of MRI for HCC according to contrast agent type: a systematic review and meta-analysis.

Hepatol Int. 14: 1009-1022Welle C.L. Guglielmo F.F. Venkatesh S.K.

MRI of the liver: choosing the right contrast agent.

Abdom Radiol (NY). 45: 384-392Marrero J.A. Kulik L.M. Sirlin C.B. et al.

Diagnosis, Staging, and Management of Hepatocellular Carcinoma: 2018 Practice Guidance by the American Association for the Study of Liver Diseases.

Hepatology. 68: 723-750Kim D.H. Choi S.H. Park S.H. et al.

The Liver Imaging Reporting and Data System tumor-in-vein category: a systematic review and meta-analysis.

Eur Radiol. 31: 2497-2506Baheti A.D. Dunham G.M. Ingraham C.R. et al.

Clinical implications for imaging of vascular invasion in hepatocellular carcinoma.

Abdom Radiol (NY). 41: 1800-1810Feuerlein S. Gupta R.T. Boll D.T. et al.

Hepatocellular MR contrast agents: enhancement characteristics of liver parenchyma and portal vein after administration of gadoxetic acid in comparison to gadobenate dimeglumine.

Eur J Radiol. 81: 2037-2041Parente D.B. Perez R.M. Eiras-Araujo A. et al.

MR imaging of hypervascular lesions in the cirrhotic liver: a diagnostic dilemma.

Radiographics. 32: 767-787Rosenkrantz A.B. Lee L. Matza B.W. et al.

Infiltrative hepatocellular carcinoma: comparison of MRI sequences for lesion conspicuity.

Clin Radiol. 67: e105-e111Frydrychowicz A. Lubner M.G. Brown J.J. et al.

Hepatobiliary MR imaging with gadolinium-based contrast agents.

J Magn Reson Imaging. 35: 492-511Ringe K.I. Husarik D.B. Sirlin C.B. et al.

Gadoxetate disodium-enhanced MRI of the liver: part 1, protocol optimization and lesion appearance in the noncirrhotic liver.

AJR Am J Roentgenol. 195: 13-28Filippone A. Blakeborough A. Breuer J. et al.

Enhancement of liver parenchyma after injection of hepatocyte-specific MRI contrast media: a comparison of gadoxetic acid and gadobenate dimeglumine.

J Magn Reson Imaging. 31: 356-364Frericks B.B. Loddenkemper C. Huppertz A. et al.

Qualitative and quantitative evaluation of hepatocellular carcinoma and cirrhotic liver enhancement using Gd-EOB-DTPA.

AJR Am J Roentgenol. 193: 1053-1060Tirkes T. Mehta P. Aisen A.M. et al.

Comparison of dynamic phase enhancement of hepatocellular carcinoma using gadoxetate disodium vs gadobenate dimeglumine.

J Comput Assist Tomogr. 39: 479-482Park M.J. Kim Y.K. Lee M.W. et al.

Small hepatocellular carcinomas: improved sensitivity by combining gadoxetic acid-enhanced and diffusion-weighted MR imaging patterns.

Radiology. 264: 761-770Hanna R.F. Miloushev V.Z. Tang A. et al.

Comparative 13-year meta-analysis of the sensitivity and positive predictive value of ultrasound, CT, and MRI for detecting hepatocellular carcinoma.

Abdom Radiol (NY). 41: 71-90Liu X. Jiang H. Chen J. et al.

Gadoxetic acid disodium-enhanced magnetic resonance imaging outperformed multidetector computed tomography in diagnosing small hepatocellular carcinoma: A meta-analysis.

Liver Transpl. 23: 1505-1518Omata M. Cheng A.L. Kokudo N. et al.

Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update.

Hepatol Int. 11: 317-370Nishie A. Goshima S. Haradome H. et al.

Cost-effectiveness of EOB-MRI for Hepatocellular Carcinoma in Japan.

Clin Ther. 39: 738-750 e4Suh C.H. Kim K.W. Park S.H. et al.

Performing Gadoxetic acid-enhanced MRI After CT for guiding curative treatment of early-stage hepatocellular carcinoma: a cost-effectiveness analysis.

Am J Roentgenol. 210: W63-W69Kitao A. Matsui O. Yoneda N. et al.

The uptake transporter OATP8 expression decreases during multistep hepatocarcinogenesis: correlation with gadoxetic acid enhanced MR imaging.

Eur Radiol. 21: 2056-2066Kim B.R. Lee J.M. Lee D.H. et al.

Diagnostic Performance of Gadoxetic Acid-enhanced Liver MR Imaging versus Multidetector CT in the Detection of Dysplastic Nodules and Early Hepatocellular Carcinoma.

Radiology. 285: 134-146Matsuda M. Ichikawa T. Amemiya H. et al.

Preoperative gadoxetic Acid-enhanced MRI and simultaneous treatment of early hepatocellular carcinoma prolonged recurrence-free survival of progressed hepatocellular carcinoma patients after hepatic resection.

HPB Surg. 2014: 641685Nakamura S. Nouso K. Kobayashi Y. et al.

The diagnosis of hypovascular hepatic lesions showing hypo-intensity in the hepatobiliary phase of Gd-EOB- DTPA-enhanced MR imaging in high-risk patients for hepatocellular carcinoma.

Acta Med Okayama. 67: 239-244Yamamoto A. Ito K. Tamada T. et al.

Newly developed hypervascular hepatocellular carcinoma during follow-up periods in patients with chronic liver disease: observation in serial gadoxetic acid-enhanced MRI.

Am J Roentgenol. 200: 1254-1260Ichikawa S. Ichikawa T. Motosugi U. et al.

Was hypervascular hepatocellular carcinoma visible on previous gadoxetic acid-enhanced magnetic resonance images?.

Liver Cancer. 4: 154-162Kim Y.S. Song J.S. Lee H.K. et al.

Hypovascular hypointense nodules on hepatobiliary phase without T2 hyperintensity on gadoxetic acid-enhanced MR images in patients with chronic liver disease: long-term outcomes and risk factors for hypervascular transformation.

Eur Radiol. 26: 3728-3736Yang H.J. Song J.S. Choi E.J. et al.

Hypovascular hypointense nodules in hepatobiliary phase without T2 hyperintensity: long-term outcomes and added value of DWI in predicting hypervascular transformation.

Clin Imaging. 50: 123-129Suh C.H. Kim K.W. Pyo J. et al.

Hypervascular transformation of hypovascular hypointense nodules in the hepatobiliary phase of gadoxetic acid-enhanced MRI: a systematic review and meta-analysis.

Am J Roentgenol. 209: 781-789Sano K. Ichikawa T. Motosugi U. et al.

Outcome of hypovascular hepatic nodules with positive uptake of gadoxetic acid in patients with cirrhosis.

Eur Radiol. 27: 518-525Matsuda M. Tsuda T. Yoshioka S. et al.

Incidence for progression of hypervascular HCC in hypovascular hepatic nodules showing hyperintensity on gadoxetic acid-enhanced hepatobiliary phase in patients with chronic liver diseases.

Jpn J Radiol. 32: 405-413Komatsu N. Motosugi U. Maekawa S. et al.

Hepatocellular carcinoma risk assessment using gadoxetic acid-enhanced hepatocyte phase magnetic resonance imaging.

Hepatol Res. 44: 1339-1346Sun H.Y. Lee J.M. Shin C.I. et al.

Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas (< or =2 cm in diameter) from arterial enhancing pseudolesions: special emphasis on hepatobiliary phase imaging.

Invest Radiol. 45: 96-103Min J.H. Kim Y.K. Kang T.W. et al.

Artifacts during the arterial phase of gadoxetate disodium-enhanced MRI: Multiple arterial phases using view-sharing from two different vendors versus single arterial phase imaging.

Eur Radiol. 28: 3335-3346Well L. Weinrich J.M. Adam G. et al.

Transient severe respiratory motion artifacts after application of gadoxetate disodium: what we currently know.

RoFo. 190: 20-30Xiao Y.D. Ma C. Liu J. et al.

Transient severe motion during arterial phase in patients with Gadoxetic acid administration: Can a five hepatic arterial subphases technique mitigate the artifact?.

Exp Ther Med. 15: 3133-3139Kim Y.K. Lin W.C. Sung K. et al.

Reducing Artifacts during Arterial Phase of Gadoxetate Disodium-enhanced MR Imaging: Dilution Method versus Reduced Injection Rate.

Radiology. 283: 429-437Polanec S.H. Bickel H. Baltzer P.A.T. et al.

Respiratory motion artifacts during arterial phase imaging with gadoxetic acid: Can the injection protocol minimize this drawback?.

J Magn Reson Imaging. 46: 1107-1114Choi S.H. Lee S.S. Kim S.Y. et al.

Intrahepatic cholangiocarcinoma in patients with cirrhosis: differentiation from hepatocellular carcinoma by using gadoxetic acid-enhanced MR Imaging and Dynamic CT.

Radiology. 282: 771-781Joo I. Lee J.M. Lee D.H. et al.

Noninvasive diagnosis of hepatocellular carcinoma on gadoxetic acid-enhanced MRI: can hypointensity on the hepatobiliary phase be used as an alternative to washout?.

Eur Radiol. 25: 2859-2868Dioguardi Burgio M. Picone D. Cabibbo G. et al.

MR-imaging features of hepatocellular carcinoma capsule appearance in cirrhotic liver: comparison of gadoxetic acid and gadobenate dimeglumine.

Abdom Radiol (NY). 41: 1546-1554Kim A.Y. Kim Y.K. Lee M.W. et al.

Detection of hepatocellular carcinoma in gadoxetic acid-enhanced MRI and diffusion-weighted MRI with respect to the severity of liver cirrhosis.

Acta Radiol. 53: 830-838Hope T.A. Fowler K.J. Sirlin C.B. et al.

Hepatobiliary agents and their role in LI-RADS.

Abdom Imaging. 40: 613-625Xie D.Y. Ren Z.G. Zhou J. et al.

Critical appraisal of Chinese 2017 guideline on the management of hepatocellular carcinoma.

Hepatobiliary Surg Nutr. 6: 387-396Brunsing R.L. Fowler K.J. Yokoo T. et al.

Alternative approach of hepatocellular carcinoma surveillance: abbreviated MRI.

Hepatoma Res. 6: 59Vietti Violi N. Lewis S. Liao J. et al.

Gadoxetate-enhanced abbreviated MRI is highly accurate for hepatocellular carcinoma screening.

Eur Radiol. 30: 6003-6013Khatri G. Pedrosa I. Ananthakrishnan L. et al.

Abbreviated-protocol screening MRI vs. complete-protocol diagnostic MRI for detection of hepatocellular carcinoma in patients with cirrhosis: An equivalence study using LI-RADS v2018.

J Magn Reson Imaging. 51: 415-425Toyoda H. Kumada T. Tada T. et al.

Non-hypervascular hypointense nodules on Gd-EOB-DTPA-enhanced MRI as a predictor of outcomes for early-stage HCC.

Hepatol Int. 9: 84-92Kim H.D. Lim Y.S. Han S. et al.

Evaluation of early-stage hepatocellular carcinoma by magnetic resonance imaging with gadoxetic acid detects additional lesions and increases overall survival.

Gastroenterology. 148: 1371-1382Shim J.H. Han S. Shin Y.M. et al.

Prognostic performance of preoperative gadoxetic acid-enhanced MRI in resectable hepatocellular carcinoma.

J Magn Reson Imaging. 41: 1115-1123Lee D.H. Lee J.M. Lee J.Y. et al.

Non-hypervascular hepatobiliary phase hypointense nodules on gadoxetic acid-enhanced MRI: risk of HCC recurrence after radiofrequency ablation.

J Hepatol. 62: 1122-1130Inoue M. Ogasawara S. Chiba T. et al.

Presence of non-hypervascular hypointense nodules on Gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging in patients with hepatocellular carcinoma.

J Gastroenterol Hepatol. 32: 908-915Kim A.Y. Sinn D.H. Jeong W.K. et al.

Hepatobiliary MRI as novel selection criteria in liver transplantation for hepatocellular carcinoma.

J Hepatol. 68: 1144-1152Jeon S.K. Joo I. Lee D.H. et al.

Combined hepatocellular cholangiocarcinoma: LI-RADS v2017 categorisation for differential diagnosis and prognostication on gadoxetic acid-enhanced MR imaging.

Eur Radiol. 29: 373-382Choi S.H. Lee S.S. Park S.H. et al.

LI-RADS Classification and Prognosis of Primary Liver Cancers at Gadoxetic Acid-enhanced MRI.

Radiology. 290: 388-397Wei H. Jiang H. Liu X. et al.

Can LI-RADS imaging features at gadoxetic acid-enhanced MRI predict aggressive features on pathology of single hepatocellular carcinoma?.

Eur J Radiol. 132: 109312Rhee H. An C. Kim H.Y. et al.

Hepatocellular carcinoma with irregular rim-like arterial phase hyperenhancement: more aggressive pathologic features.

Liver Cancer. 8: 24-40Erra P. Puglia M. Ragozzino A. et al.

Appearance of hepatocellular carcinoma on gadoxetic acid-enhanced hepato-biliary phase MR imaging: a systematic review.

Radiol Med. 120: 1002-1011Choi S.Y. Kim S.H. Park C.K. et al.

Imaging Features of Gadoxetic Acid-enhanced and Diffusion-weighted MR Imaging for Identifying Cytokeratin 19-positive Hepatocellular Carcinoma: A Retrospective Observational Study.

Radiology. 286: 897-908Yamashita T. Kitao A. Matsui O. et al.

Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma.

Hepatology. 60: 1674-1685Kitao A. Matsui O. Yoneda N. et al.

Hypervascular hepatocellular carcinoma: correlation between biologic features and signal intensity on gadoxetic acid-enhanced MR images.

Radiology. 265: 780-789Choi J.W. Lee J.M. Kim S.J. et al.

Hepatocellular carcinoma: imaging patterns on gadoxetic acid-enhanced MR Images and their value as an imaging biomarker.

Radiology. 267: 776-786Fujita N. Nishie A. Asayama Y. et al.

Significance of the signal intensity of gadoxetic acid-enhanced MR imaging for predicting the efficacy of hepatic arterial infusion chemotherapy in hepatocellular carcinoma.

Magn Reson Med Sci. 15: 111-120Huang M. Liao B. Xu P. et al.

Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Preoperative Gd-EOB-DTPA-Dynamic Enhanced MRI and Histopathological Correlation.

Contrast Media Mol Imaging. 2018: 9674565Lee S. Kim S.H. Lee J.E. et al.

Preoperative gadoxetic acid-enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma.

J Hepatol. 67: 526-534Shin S.K. Kim Y.S. Shim Y.S. et al.

Peritumoral decreased uptake area of gadoxetic acid enhanced magnetic resonance imaging and tumor recurrence after surgical resection in hepatocellular carcinoma: A STROBE-compliant article.

Medicine. 96: e7761Salarian M. Turaga R.C. Xue S. et al.

Early detection and staging of chronic liver diseases with a protein MRI contrast agent.

Nat Commun. 10: 4777Zhou I.Y. Catalano O.A. Caravan P.

Advances in functional and molecular MRI technologies in chronic liver diseases.

J Hepatol. 73: 1241-1254

Assessment of adverse reaction rates to newly approved MRI contrast agent: Review of 23,553 administrations of gadobenate dimeglumine.

Am J Roentgenol. 191: W307-W311Jung J.W. Kang H.R. Kim M.H. et al.

Immediate hypersensitivity reaction to gadolinium-based MR contrast media.

Radiology. 264: 414-422Murphy K.J.B.J. Cohan R.H.

Adverse reactions to gadolinium contrast media: a review of 36 cases.

AJR Am J Roentgenol. 167: 847-849

Safety of approved MR contrast media for intravenous injection.

J Magn Reson Imaging. 12: 205-213

Safety of magnetic resonance contrast media.

Top Magn Reson Imaging. 12: 309-314

Biochemical safety profiles of gadolinium based extracellular contrast agents and nephrogenic systemic fibrosis.

J Magn Reson Imaging. 26: 1190-1197Kanda T. Ishii K. Kawaguchi H. et al.

High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material.

Radiology. 270: 834-841

Available at: www.ACR.org/-/media/ACR/Files/Clinical-Resource/Contrast_Media.pdf. Accessed April 29, 2021.

Errante Y. Cirimele V. Mallio C.A. et al.

Progressive increase of T1 signal intensity of the dentate nucleus on unenhanced magnetic resonance images is associated with cumulative doses of intravenously administered gadodiamide in patients with normal renal function, suggesting dechelation.

Invest Radiol. 49: 685-690Radbruch A. Weberling L.D. Kieslich P.J. et al.

Gadolinium retention in the dentate nucleus and globus pallidus is dependent on the class of contrast agent.

Radiology. 275: 783-791Kromrey M.L. Liedtke K.R. Ittermann T. et al.

Intravenous injection of gadobutrol in an epidemiological study group did not lead to a difference in relative signal intensities of certain brain structures after 5 years.

Eur Radiol. 27: 772-777Rofsky N.M. Weinreb J.C. Litt A.W.

Quantitative analysis of gadopentate diglumine excreted in breast milk.

J Magn Resson Imaging. 3: 131-132Webb J.A. Thomsen H.S. Morcos S.K.

The use of iodinated and gadolinium contrast media during pregnancy and lactation.

Eur Radiol. 15: 1234-1240De Santis M. Straface G. Cavaliere A.F. et al.

Gadolinium periconceptional exposure: pregnancy and neonatal outcome.

Acta Obstet Gynecol Scand. 86: 99-101

留言 (0)

沒有登入
gif