Computed Tomography Techniques, Protocols, Advancements, and Future Directions in Liver Diseases

Diffuse liver disease: strategies for hepatic CT and MR imaging.

Radiographics. 29: 1591-1614McCollough C.H. Leng S. Yu L. et al.

Dual- and multi-energy CT: principles, technical approaches, and clinical applications.

Radiology. 276: 637-653

Recent and upcoming technological developments in computed tomography: high speed, low dose, deep learning, multienergy.

Invest Radiol. 55: 8-19

Advances in computed tomography imaging technology.

Annu Rev Biomed Eng. 16: 431-453Ramirez-Giraldo J.C. Grant K. Primak A.N.

Thomas Flohr new approaches to reduce radiation while maintaining image quality in multi-detector-computed tomography.

Curr Radiol Rep. 3Soloff E.V. Desai N. Busey J.M. et al.

Feasibility of wide detector three-pass arterial phase liver CT in patients with cirrhosis: timing of hyperenhancing lesion peak conspicuity.

Abdom Radiol (Ny). 45: 2370-2377Fang W. Wang C.H. Yu Y.F. et al.

The feasibility of 1-stop examination of coronary CT angiography and abdominal enhanced CT.

Medicine (Baltimore). 97: e11651Palorini F. Origgi D. Granata C. et al.

Adult exposures from MDCT including multiphase studies: first Italian nationwide survey.

Eur Radiol. 24: 469-483Israel G.M. Cicchiello L. Brink J. et al.

Patient size and radiation exposure in thoracic, pelvic, and abdominal CT examinations performed with automatic exposure control.

AJR Am J Roentgenol. 195: 1342-1346Kalra M.K. Maher M.M. Toth T.L. et al.

Comparison of Z-axis automatic tube current modulation technique with fixed tube current CT scanning of abdomen and pelvis.

Radiology. 232: 347-353Yeh B.M. Shepherd J.A. Wang Z.J. et al.

Dual-energy and low-kVp CT in the abdomen.

AJR Am J Roentgenol. 193: 47-54Lee K.H. Lee J.M. Moon S.K. et al.

Attenuation-based automatic tube voltage selection and tube current modulation for dose reduction at contrast-enhanced liver CT.

Radiology. 265: 437-447Marin D. Nelson R.C. Schindera S.T. et al.

Low-tube-voltage, high-tube-current multidetector abdominal CT: improved image quality and decreased radiation dose with adaptive statistical iterative reconstruction algorithm--initial clinical experience.

Radiology. 254: 145-153Desai G.S. Uppot R.N. Yu E.W. et al.

Impact of iterative reconstruction on image quality and radiation dose in multidetector CT of large body size adults.

Eur Radiol. 22: 1631-1640Seyal A.R. Arslanoglu A. Abboud S.F. et al.

CT of the Abdomen with Reduced Tube Voltage in Adults: A Practical Approach.

Radiographics. 35: 1922-1939Prakash P. Kalra M.K. Kambadakone A.K. et al.

Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique.

Invest Radiol. 45: 202-210Mileto A. Guimaraes L.S. McCollough C.H. et al.

State of the art in abdominal CT: the limits of iterative reconstruction algorithms.

Radiology. 293: 491-503Chung B.M. Park H.J. Park S.B. et al.

Differentiation of small arterial enhancing hepatocellular carcinoma from non-tumorous arterioportal shunt with an emphasis on the precontrast CT scan.

Abdom Imaging. 40: 2200-2209Hennedige T. Yang Z.J. Ong C.K. et al.

Utility of non-contrast-enhanced CT for improved detection of arterial phase hyperenhancement in hepatocellular carcinoma.

Abdom Imaging. 39: 1247-1254Kim H.C. Kim A.Y. Han J.K. et al.

Hepatic arterial and portal venous phase helical CT in patients treated with transcatheter arterial chemoembolization for hepatocellular carcinoma: added value of unenhanced images.

Radiology. 225: 773-780

Use of high concentration contrast media (HCCM): principles and rationale--body CT.

Eur J Radiol. 45: S53-S58Heiken J.P. Brink J.A. McClennan B.L. et al.

Dynamic incremental CT: effect of volume and concentration of contrast material and patient weight on hepatic enhancement.

Radiology. 195: 353-357Laghi A. Iannaccone R. Rossi P. et al.

Hepatocellular carcinoma: detection with triple-phase multi-detector row helical CT in patients with chronic hepatitis.

Radiology. 226: 543-549Ichikawa T. Kitamura T. Nakajima H. et al.

Hypervascular hepatocellular carcinoma: can double arterial phase imaging with multidetector CT improve tumor depiction in the cirrhotic liver?.

AJR Am J Roentgenol. 179: 751-758

Intravenous contrast medium administration and scan timing at CT: considerations and approaches.

Radiology. 256: 32-61Liu Y.I. Kamaya A. Jeffrey R.B. et al.

Multidetector computed tomography triphasic evaluation of the liver before transplantation: importance of equilibrium phase washout and morphology for characterizing hypervascular lesions.

J Comput Assist Tomogr. 36: 213-219Lim J.H. Choi D. Kim S.H. et al.

Detection of hepatocellular carcinoma: value of adding delayed phase imaging to dual-phase helical CT.

AJR Am J Roentgenol. 179: 67-73Lam A. Fernando D. Sirlin C.C. et al.

Value of the portal venous phase in evaluation of treated hepatocellular carcinoma following transcatheter arterial chemoembolisation.

Clin Radiol. 72: 994.e9-994.e16Chu L.L. Joe B.N. Westphalen A.C. et al.

Patient-specific time to peak abdominal organ enhancement varies with time to peak aortic enhancement at MR imaging.

Radiology. 245: 779-787Schneider J.G. Wang Z.J. Wang W. et al.

Patient-tailored scan delay for multiphase liver CT: improved scan quality and lesion conspicuity with a novel timing bolus method.

AJR Am J Roentgenol. 202: 318-323Iannaccone R. Laghi A. Catalano C. et al.

Hepatocellular carcinoma: role of unenhanced and delayed phase multi-detector row helical CT in patients with cirrhosis.

Radiology. 234: 460-467Liu Y.I. Shin L.K. Jeffrey R.B. et al.

Quantitatively defining washout in hepatocellular carcinoma.

AJR Am J Roentgenol. 200: 84-89Monzawa S. Ichikawa T. Nakajima H. et al.

Dynamic CT for detecting small hepatocellular carcinoma: usefulness of delayed phase imaging.

AJR Am J Roentgenol. 188: 147-153De Cecco C.N. Darnell A. Rengo M. et al.

Dual-energy CT: oncologic applications.

AJR Am J Roentgenol. 199: S98-S105

Dual-energy CT of the abdomen.

Abdom Imaging. 39: 108-134Zhang L.J. Peng J. Wu S.Y. et al.

Liver virtual non-enhanced CT with dual-source, dual-energy CT: a preliminary study.

Eur Radiol. 20: 2257-2264De Cecco C.N. Muscogiuri G. Schoepf U.J. et al.

Virtual unenhanced imaging of the liver with third-generation dual-source dual-energy CT and advanced modeled iterative reconstruction.

Eur J Radiol. 85: 1257-1264De Cecco C.N. Darnell A. Macias N. et al.

Virtual unenhanced images of the abdomen with second-generation dual-source dual-energy computed tomography: image quality and liver lesion detection.

Invest Radiol. 48: 1-9Lee J.M. Yoon J.H. Joo I. et al.

Recent advances in CT and MR imaging for evaluation of hepatocellular carcinoma.

Liver Cancer. 1: 22-40Yu L. Leng S. McCollough C.H.

Dual-energy CT-based monochromatic imaging.

AJR Am J Roentgenol. 199: S9-S15Yamada Y. Jinzaki M. Tanami Y. et al.

Virtual monochromatic spectral imaging for the evaluation of hypovascular hepatic metastases: the optimal monochromatic level with fast kilovoltage switching dual-energy computed tomography.

Invest Radiol. 47: 292-298Lv P. Zhou Z. Liu J. et al.

Can virtual monochromatic images from dual-energy CT replace low-kVp images for abdominal contrast-enhanced CT in small- and medium-sized patients?.

Eur Radiol. 29: 2878-2889Caruso D. De Cecco C.N. Schoepf U.J. et al.

Can dual-energy computed tomography improve visualization of hypoenhancing liver lesions in portal venous phase? Assessment of advanced image-based virtual monoenergetic images.

Clin Imaging. 41: 118-124Patino M. Prochowski A. Agrawal M.D. et al.

Material separation using dual-energy CT: current and emerging applications.

Radiographics. 36: 1087-1105Agrawal M.D. Pinho D.F. Kulkarni N.M. et al.

Oncologic applications of dual-energy CT in the abdomen.

Radiographics. 34: 589-612Qian L.J. Zhu J. Zhuang Z.G. et al.

Differentiation of neoplastic from bland macroscopic portal vein thrombi using dual-energy spectral CT imaging: a pilot study.

Eur Radiol. 22: 2178-2185Lee J.A. Jeong W.K. Kim Y. et al.

Dual-energy CT to detect recurrent HCC after TACE: initial experience of color-coded iodine CT imaging.

Eur J Radiol. 82: 569-576Lee S.H. Lee J.M. Kim K.W. et al.

Dual-energy computed tomography to assess tumor response to hepatic radiofrequency ablation: potential diagnostic value of virtual noncontrast images and iodine maps.

Invest Radiol. 46: 77-84

Liver cirrhosis.

Lancet. 371: 838-851Chalasani N. Younossi Z. Lavine J.E. et al.

The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases.

Hepatology. 67: 328-357Kose S. Ersan G. Tatar B. et al.

Evaluation of percutaneous liver biopsy complications in patients with chronic viral hepatitis.

Eurasian J Med. 47: 161-164

Nonalcoholic fatty liver disease as a multi-systemic disease.

World J Gastroenterol. 22: 4079-4090Adams P. Brissot P. Powell L.W.

EASL international consensus conference on haemochromatosis.

J Hepatol. 33: 485-504Pickhardt P.J. Park S.H. Hahn L. et al.

Specificity of unenhanced CT for non-invasive diagnosis of hepatic steatosis: implications for the investigation of the natural history of incidental steatosis.

Eur Radiol. 22: 1075-1082Zheng X. Ren Y. Phillips W.T. et al.

Assessment of hepatic fatty infiltration using spectral computed tomography imaging: a pilot study.

J Comput Assist Tomogr. 37: 134-141Hyodo T. Hori M. Lamb P. et al.

Multimaterial decomposition algorithm for the quantification of liver fat content by using Fast-Kilovolt-Peak switching dual-energy CT: experimental validation.

Radiology. 282: 381-389Patel B.N. Kumbla R.A. Berland L.L. et al.

Material density hepatic steatosis quantification on intravenous contrast-enhanced rapid kilovolt (peak)-switching single-source dual-energy computed tomography.

J Comput Assist Tomogr. 37: 904-910Kramer H. Pickhardt P.J. Kliewer M.A. et al.

Accuracy of Liver fat quantification with advanced CT, MRI, and ultrasound techniques: prospective comparison with MR spectroscopy.

AJR Am J Roentgenol. 208: 92-100Joe E. Kim S.H. Lee K.B. et al.

Feasibility and accuracy of dual-source dual-energy CT for noninvasive determination of hepatic iron accumulation.

Radiology. 262: 126-135Luo X.F. Xie X.Q. Cheng S. et al.

Dual-energy CT for patients suspected of having liver iron overload: can virtual iron content imaging accurately quantify liver iron content?.

Radiology. 277: 95-103

Separation of hepatic iron and fat by dual-source dual-energy computed tomography based on material decomposition: an animal study.

PLoS One. 9: e110964Werner S. Krauss B. Haberland U. et al.

Dual-energy CT for liver iron quantification in patients with haematological disorders.

Eur Radiol. 29: 2868-2877Lee Y.A. Wallace M.C. Friedman S.L.

Pathobiology of liver fibrosis: a translational success story.

Gut. 64: 830-841Horowitz J.M. Venkatesh S.K. Ehman R.L. et al.

Evaluation of hepatic fibrosis: a review from the society of abdominal radiology disease focus panel.

Abdom Radiol (Ny). 42: 2037-2053Furusato Hunt O.M. Lubner M.G. Ziemlewicz T.J. et al.

The liver segmental volume ratio for noninvasive detection of cirrhosis: comparison with established linear and volumetric measures.

J Comput Assist Tomogr. 40: 478-484Smith A.D. Branch C.R. Zand K. et al.

Liver surface nodularity quantification from routine ct images as a biomarker for detection and evaluation of cirrhosis.

Radiology. 280: 771-781Varenika V. Fu Y. Maher J.J. et al.

Hepatic fibrosis: evaluation with semiquantitative contrast-enhanced CT.

Radiology. 266: 151-158Lamb P. Sahani D.V. Fuentes-Orrego J.M. et al.

Stratification of patients with liver fibrosis using dual-energy CT.

IEEE Trans Med Imaging. 34: 807-815Hosny A. Parmar C. Quackenbush J. et al.

Artificial intelligence in radiology.

Nat Rev Cancer. 18: 500-510Higaki T. Nakamura Y. Tatsugami F. et al.

Improvement of image quality at CT and MRI using deep learning.

Jpn J Radiol. 37: 73-80Vivanti R. Szeskin A. Lev-Cohain N. et al.

Automatic detection of new tumors and tumor burden evaluation in longitudinal liver CT scan studies.

Int J Comput Assist Radiol Surg. 12: 1945-1957Yasaka K. Akai H. Abe O. et al.

Deep learning with convolutional neural network for differentiation of liver masses at dynamic contrast-enhanced CT: A preliminary study.

Radiology. 286: 887-896Choi K.J. Jang J.K. Lee S.S. et al.

Development and Validation of a deep learning system for staging liver fibrosis by using contrast agent-enhanced CT images in the liver.

Radiology. 289: 688-697Willemink M.J. Persson M. Pourmorteza A. et al.

Photon-counting CT: technical principles and clinical prospects.

Radiology. 289: 293-312Symons R. Reich D.S. Bagheri M. et al.

Photon-counting computed tomography for vascular imaging of the head and neck: first in vivo human results.

Invest Radiol. 53: 135-142Symons R. Krauss B. Sahbaee P. et al.

Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study.

Med Phys. 44: 5120-5127Yeh B.M. FitzGerald P.F. Edic P.M. et al.

Opportunities for new CT contrast agents to maximize the diagnostic potential of emerging spectral CT technologies.

Adv Drug Deliv Rev. 113: 201-222Si-Mohamed S. Thivolet A. Bonnot P.E. et al.

Improved peritoneal cavity and abdominal organ imaging using a biphasic contrast agent protocol and spectral photon counting computed tomography K-edge imaging.

Invest Radiol. 53: 629-639

留言 (0)

沒有登入
gif