The Role of The Gut Microbiome in Parkinson’s Disease

1. Hirsch, L, Jette, N, Frolkis, A, Steeves, T, Pringsheim, T. The incidence of Parkinson’s disease: a systematic review and meta-analysis. Neuroepidemiology. 2016;46(4):292–300. doi:10.1159/000445751
Google Scholar | Crossref | Medline2. Sveinbjornsdottir, S . The clinical symptoms of Parkinson’s disease. J Neurochem. 2016;139:318–324. doi:10.1111/jnc.13691
Google Scholar | Crossref | Medline | ISI3. Postuma, RB, Berg, D, Stern, M, et al. MDS clinical diagnostic criteria for Parkinson’s disease: MDS-PD Clinical Diagnostic Criteria. Mov Disord. 2015;30(12):1591–1601. doi:10.1002/mds.26424
Google Scholar | Crossref | Medline4. Moisan, F, Kab, S, Mohamed, F, et al. Parkinson disease male-to-female ratios increase with age: French nationwide study and meta-analysis. J Neurol Neurosurg Psychiatry. 2016;87(9):952–957. doi:10.1136/jnnp-2015-312283
Google Scholar | Crossref | Medline5. Chartier-Harlin, M-C, Kachergus, J, Roumier, C, et al. α-synuclein locus duplication as a cause of familial Parkinson’s disease. The Lancet. 2004;364(9440):1167–1169. doi:10.1016/S0140-6736(04)17103-1
Google Scholar | Crossref | Medline | ISI6. Hawkes, CH, Del Tredici, K, Braak, H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614. doi:10.1111/j.1365-2990.2007.00874.x
Google Scholar | Crossref | Medline | ISI7. Braak, H, Braak, E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000;247(S2):II3–II10. doi:10.1007/PL00007758
Google Scholar | Crossref | Medline8. Seguella, L, Sarnelli, G, Esposito, G. Leaky gut, dysbiosis, and enteric glia activation: the trilogy behind the intestinal origin of Parkinson’s disease. Neural Regen Res. 2020;15(6):1037. doi:10.4103/1673-5374.270308
Google Scholar | Crossref | Medline9. Langston, JW . Current theories on the cause of Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1989;52(Suppl):13–17. doi:10.1136/jnnp.52.Suppl.13
Google Scholar | Crossref10. Abbasi, MH, Esmaeili, S, Habibi, SA, Shahidi, GA. dilemma in Parkinson’s treatment; levodopa monotherapy may be the best choice. J Clin Neurosci. 2020;79:219–223. doi:10.1016/j.jocn.2020.06.024
Google Scholar | Crossref | Medline11. Connolly, BS, Lang, AE. Pharmacological treatment of Parkinson disease: a review. JAMA. 2014;311(16):1670. doi:10.1001/jama.2014.3654
Google Scholar | Crossref | Medline12. AlDakheel, A, Kalia, LV, Lang, AE. Pathogenesis-targeted, disease-modifying therapies in Parkinson disease. Neurotherapeutics. 2014;11(1):6–23. doi:10.1007/s13311-013-0218-1
Google Scholar | Crossref | Medline13. Olanow, CW, Watts, RL, Koller, WC. An algorithm (decision tree) for the management of Parkinson’s disease (2001): treatment. Neurology. 2001;56(Supplement 5): S1–S88. doi:10.1212/WNL.56.suppl_5.S1
Google Scholar | Crossref | Medline14. Okun, MS . Deep-Brain stimulation for Parkinson’s disease. N Engl J Med. 2012;367(16):1529–1538. doi:10.1056/NEJMct1208070
Google Scholar | Crossref | Medline15. Berg, G, Rybakova, D, Fischer, D, et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):103. doi:10.1186/s40168-020-00875-0
Google Scholar | Crossref | Medline16. Ley, RE, Peterson, DA, Gordon, JI. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006;124(4):837–848. doi:10.1016/j.cell.2006.02.017
Google Scholar | Crossref | Medline | ISI17. Dinan, TG, Cryan, JF. Gut instincts: microbiota as a key regulator of brain development, ageing and neurodegeneration: microbiota-gut-brain axis across the lifespan. J Physiol. 2017;595(2):489–503. doi:10.1113/JP273106
Google Scholar | Crossref | Medline18. Bedarf, JR, Hildebrand, F, Coelho, LP, et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 2017;9(1):39. doi:10.1186/s13073-017-0428-y
Google Scholar | Crossref | Medline19. Alifirova, VM, Zhukova, NG, Zhukova, IA, et al. Correlation between emotional-affective disorders and gut microbiota composition in patients with Parkinson’s disease [in Russian]. Vestn Ross Akad Med Nauk. 2016;71(6):427–435. doi:10.15690/vramn734
Google Scholar | Medline20. Scheperjans, F, Aho, V, Pereira, PAB, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord. 2015;30(3):350–358. doi:10.1002/mds.26069
Google Scholar | Crossref | Medline21. Unger, MM, Spiegel, J, Dillmann, K-U, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66–72. doi:10.1016/j.parkreldis.2016.08.019
Google Scholar | Crossref | Medline22. Keshavarzian, A, Green, SJ, Engen, PA, et al. Colonic bacterial composition in Parkinson’s disease: colonic microbiota in Parkinson’s disease. Mov Disord. 2015;30(10):1351–1360. doi:10.1002/mds.26307
Google Scholar | Crossref | Medline23. Hill-Burns, EM, Debelius, JW, Morton, JT, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome: PD, medications, and gut microbiome. Mov Disord. 2017;32(5):739–749. doi:10.1002/mds.26942
Google Scholar | Crossref | Medline24. Barichella, M, Severgnini, M, Cilia, R, et al. Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord. 2019;34(3):396–405. doi:10.1002/mds.27581
Google Scholar | Crossref | Medline25. Heintz-Buschart, A, Pandey, U, Wicke, T, et al. The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder: nose and gut microbiome in PD and iRBD. Mov Disord. 2018;33(1):88–98. doi:10.1002/mds.27105
Google Scholar | Crossref | Medline26. Hasegawa, S, Goto, S, Tsuji, H, et al. Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS One. 2015;10(11): e0142164. doi:10.1371/journal.pone.0142164
Google Scholar | Crossref | Medline27. Altschuler, E . Gastric Helicobacter pylori infection as a cause of idiopathic Parkinson disease and non-arteric anterior optic ischemic neuropathy. Med Hypotheses. 1996;47(5):413–414. doi:10.1016/S0306-9877(96)90223-6
Google Scholar | Crossref | Medline28. Devos, D, Lebouvier, T, Lardeux, B, et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–48. doi:10.1016/j.nbd.2012.09.007
Google Scholar | Crossref | Medline29. Salat-Foix, D, Tran, K, Ranawaya, R, Meddings, J, Suchowersky, O. Increased intestinal permeability and Parkinson disease patients: chicken or egg? Can J Neurol Sci. 2012;39(2):185–188. doi:10.1017/S0317167100013202
Google Scholar | Crossref | Medline30. Forsyth, CB, Shannon, KM, Kordower, JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011;6(12):e28032. doi:10.1371/journal.pone.0028032
Google Scholar | Crossref | Medline31. Davies, KN, King, D, Billington, D, Barrett, JA. Intestinal permeability and orocaecal transit time in elderly patients with Parkinson’s disease. Postgrad Med J. 1996;72(845):164–167. doi:10.1136/pgmj.72.845.164
Google Scholar | Crossref | Medline32. Pal, GD, Shaikh, M, Forsyth, CB, Ouyang, B, Keshavarzian, A, Shannon, KM. Abnormal lipopolysaccharide binding protein as marker of gastrointestinal inflammation in Parkinson disease. Front Neurosci. 2015;9:306. doi:10.3389/fnins.2015.00306
Google Scholar | Crossref | Medline33. Sampson, TR, Debelius, JW, Thron, T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell. 2016;167(6):1469–1480. e12. doi:10.1016/j.cell.2016.11.018
Google Scholar | Crossref | Medline34. Rolli-Derkinderen, M, Leclair-Visonneau, L, Bourreille, A, Coron, E, Neunlist, M, Derkinderen, P. Is Parkinson’s disease a chronic low-grade inflammatory bowel disease? J Neurol. 2020;267(8):2207–2213. doi:10.1007/s00415-019-09321-0
Google Scholar | Crossref | Medline35. Ishioh, M, Nozu, T, Igarashi, S, et al. Ghrelin acts in the brain to block colonic hyperpermeability in response to lipopolysaccharide through the vagus nerve. Neuropharmacology. 2020;173:108116. doi:10.1016/j.neuropharm.2020.108116
Google Scholar | Crossref | Medline36. Tan, AH, Mahadeva, S, Marras, C, et al. Helicobacter pylori infection is associated with worse severity of Parkinson’s disease. Parkinsonism Relat Disord. 2015;21(3):221–225. doi:10.1016/j.parkreldis.2014.12.009
Google Scholar | Crossref | Medline37. Lee, WY, Yoon, WT, Shin, HY, Jeon, SH, Rhee, P-L. Helicobacter pylori infection and motor fluctuations in patients with Parkinson’s disease. Mov Disord. 2008;23(12):1696–1700. doi:10.1002/mds.22190
Google Scholar | Crossref | Medline38. Dukowicz, AC, Lacy, BE, Levine, GM. Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol Hepatol. 2007;3(2):112–122.
Google Scholar39. Chiang, H-L, Lin, C-H. Altered gut microbiome and intestinal pathology in Parkinson’s disease. J Mov Disord. 2019;12(2):67–83. doi:10.14802/jmd.18067
Google Scholar | Crossref | Medline40. Ternák, G, Kuti, D, Kovács, KJ. Dysbiosis in Parkinson’s disease might be triggered by certain antibiotics. Med Hypotheses. 2020;137:109564. doi:10.1016/j.mehy.2020.109564
Google Scholar | Crossref | Medline41. Chen, SG, Stribinskis, V, Rane, MJ, et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep. 2016;6(1):34477. doi:10.1038/srep34477
Google Scholar | Crossref | Medline42. Lundmark, K, Westermark, GT, Olsen, A, Westermark, P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: cross-seeding as a disease mechanism. Proc Natl Acad Sci. 2005;102(17):6098–6102. doi:10.1073/pnas.0501814102
Google Scholar | Crossref | Medline | ISI43. Mertsalmi, TH, Pekkonen, E, Scheperjans, F. Antibiotic exposure and risk of Parkinson’s disease in Finland: a nationwide case-control study. Mov Disord. 2020;35(3):431–442. doi:10.1002/mds.27924
Google Scholar | Crossref | Medline44. Koh, A, De Vadder, F, Kovatcheva-Datchary, P, Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345. doi:10.1016/j.cell.2016.05.041
Google Scholar | Crossref | Medline45. Wallen, ZD, Appah, M, Dean, MN, et al. Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. Npj Park Dis. 2020;6(1):11. doi:10.1038/s41531-020-0112-6
Google Scholar | Crossref | Medline46. Parada Venegas, D, De la Fuente, MK, Landskron, G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front Immunol. 2019;10:277. doi:10.3389/fimmu.2019.00277
Google Scholar | Crossref | Medline47. Bhattacharyya, D, Mohite, GM, Krishnamoorthy, J, et al. Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci. 2019;10(5):2229–2236. doi:10.1021/acschemneuro.8b00733
Google Scholar | Crossref | Medline48. Gao, H-M, Zhang, F, Zhou, H, Kam, W, Wilson, B, Hong, J-S. Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect. 2011;119(6):807–814. doi:10.1289/ehp.1003013
Google Scholar | Crossref |

留言 (0)

沒有登入
gif