Recent Advances on Immune Targeted Therapy of Colorectal Cancer Using bi-Specific Antibodies and Therapeutic Vaccines

1.

Gandomani HS, Yousefi SM, Aghajani M, Mohammadian-Hafshejani A, Tarazoj AA, Pouyesh V, et al. Colorectal cancer in the world: incidence, mortality and risk factors. Biomed Res Ther. 2017;4(10):1656–75. https://doi.org/10.15419/bmrat.v4i10.372.

Article  Google Scholar 

2.

Mojarad EN, et al. The CpG island methylator phenotype (CIMP) in colorectal cancer. Gastroenterol Hepatol Bed Bench. 2013;6(3):120.

PubMed Central  Google Scholar 

3.

Teodoridis JM, Hardie C, Brown R. CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett. 2008;268(2):177–86. https://doi.org/10.1016/j.canlet.2008.03.022.

CAS  Article  PubMed  PubMed Central  Google Scholar 

4.

Kalva SP, et al. Yttrium-90 radioembolization as salvage therapy for liver metastases from colorectal cancer. Am J Clin Oncol. 2017;40(3):288–93.

PubMed  Article  PubMed Central  Google Scholar 

5.

Misiakos EP, et al. Current treatment for colorectal liver metastases. World J Gastroenterol: WJG. 2011;17(36):4067.

PubMed  PubMed Central  Article  Google Scholar 

6.

Payandeh Z, Noori E, Khalesi B, Mard-Soltani M, Abdolalizadeh J, Khalili S. Anti-CD37 targeted immunotherapy of B-cell malignancies. Biotechnol Lett. 2018;40(11):1459–66. https://doi.org/10.1007/s10529-018-2612-6.

7.

Zarnani A-H, et al. Monoclonal antibodies for cancer immunotherapy. In: In Cancer immunology: Springer; 2015. p. 293–328.

8.

Zhao J, et al. The combination of systemic chemotherapy and local treatment may improve the survival of patients with unresectable metastatic colorectal cancer. Mol Clin Oncol. 2017;6(6):856–60.

CAS  PubMed  PubMed Central  Article  Google Scholar 

9.

Wu Y, et al. PD-L1 distribution and perspective for cancer immunotherapy–blockade, knockdown, or inhibition. Front Immunol. 2019;10:2022.

CAS  PubMed  PubMed Central  Article  Google Scholar 

10.

Kajihara M, Takakura K, Kanai T, Ito Z, Saito K, Takami S, et al. Dendritic cell-based cancer immunotherapy for colorectal cancer. World J Gastroenterol. 2016;22(17):4275–86. https://doi.org/10.3748/wjg.v22.i17.4275.

CAS  Article  PubMed  PubMed Central  Google Scholar 

11.

Yu P, et al. Simultaneous blockade of multiple immune system inhibitory checkpoints enhances antitumor activity mediated by interleukin-15 in a murine metastatic colon carcinoma model. Clin Cancer Res. 2010;16(24):6019–28.

CAS  PubMed  PubMed Central  Article  Google Scholar 

12.

Ewing I, Hurley JJ, Josephides E, Millar A. The molecular genetics of colorectal cancer. Front Gastroenterol. 2014;5(1):26–30. https://doi.org/10.1136/flgastro-2013-100329.

CAS  Article  Google Scholar 

13.

Kirk R. Genetics: in colorectal cancer, not all KRAS mutations are created equal. Nat Rev Clin Oncol. 2010;8(1):1.

Article  Google Scholar 

14.

Pritchard CC, Grady WM. Colorectal cancer molecular biology moves into clinical practice. Gut. 2011;60(1):116–29.

CAS  PubMed  Article  PubMed Central  Google Scholar 

15.

Markowitz SD, Bertagnolli MM. Molecular basis of colorectal cancer. N Engl J Med. 2009;361(25):2449–60. https://doi.org/10.1056/NEJMra0804588.

CAS  Article  PubMed  PubMed Central  Google Scholar 

16.

Liao X, Lochhead P, Nishihara R, Morikawa T, Kuchiba A, Yamauchi M, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367(17):1596–606. https://doi.org/10.1056/NEJMoa1207756.

CAS  Article  PubMed  PubMed Central  Google Scholar 

17.

Coosemans, A. (2011) Wilms’ tumour gene 1 (WT1) as an immunotherapeutic target. Facts, views & vision in ObGyn 3 (2), 89.

Google Scholar 

18.

Colebatch A, Hitchins M, Williams R, Meagher A, Hawkins NJ, Ward RL. The role of MYH and microsatellite instability in the development of sporadic colorectal cancer. Br J Cancer. 2006;95(9):1239–43. https://doi.org/10.1038/sj.bjc.6603421.

CAS  Article  PubMed  PubMed Central  Google Scholar 

19.

Liu K-J, Wang CC, Chen LT, Cheng AL, Lin DT, Wu YC, et al. Generation of carcinoembryonic antigen (CEA)-specific T-cell responses in HLA-A* 0201 and HLA-A* 2402 late-stage colorectal cancer patients after vaccination with dendritic cells loaded with CEA peptides. Clin Cancer Res. 2004;10(8):2645–51. https://doi.org/10.1158/1078-0432.CCR-03-0430.

CAS  Article  PubMed  PubMed Central  Google Scholar 

20.

Lesterhuis W, et al. Vaccination of colorectal cancer patients with CEA-loaded dendritic cells: antigen-specific T cell responses in DTH skin tests. Ann Oncol. 2006;17(6):974–80. https://doi.org/10.1093/annonc/mdl072.

CAS  Article  PubMed  PubMed Central  Google Scholar 

21.

Payandeh Z, Yarahmadi M, Nariman-Saleh-Fam Z, Tarhriz V, Islami M, Aghdam AM, Eyvazi S. Immune therapy of melanoma: overview of therapeutic vaccines. J Cell Physiol. 2019;234(9):14612–21.

22.

Kerkar SP, et al. MAGE-A is more highly expressed than NY-ESO-1 in a systematic immunohistochemical analysis of 3668 cases. Journal of immunotherapy (Hagerstown, Md.: 1997). 2016;39(4):181.

CAS  Google Scholar 

23.

Guo M, You C, Dou J. Role of transmembrane glycoprotein mucin 1 (MUC1) in various types of colorectal cancer and therapies: current research status and updates. Biomed Pharmacother. 2018;107:1318–25. https://doi.org/10.1016/j.biopha.2018.08.109.

CAS  Article  PubMed  PubMed Central  Google Scholar 

24.

Uchida N, et al. Ring finger protein 43 as a new target for cancer immunotherapy. Clin Cancer Res. 2004;10(24):8577–86.

CAS  PubMed  Article  PubMed Central  Google Scholar 

25.

Okuno K, et al. Phase I clinical trial of a novel peptide vaccine in combination with UFT/LV for metastatic colorectal cancer. Experiment Ther Med. 2011;2(1):73–9. https://doi.org/10.3892/etm.2010.182.

CAS  Article  Google Scholar 

26.

Okuno K, Sugiura F, Inoue K, Sukegawa Y. Clinical trial of a 7-peptide cocktail vaccine with oral chemotherapy for patients with metastatic colorectal cancer. Anticancer Res. 2014;34(6):3045–52.

CAS  PubMed  PubMed Central  Google Scholar 

27.

Taniguchi H, Iwasa S, Yamazaki K, Yoshino T, Kiryu C, Naka Y, et al. Phase 1 study of OCV-C02, a peptide vaccine consisting of two peptide epitopes for refractory metastatic colorectal cancer. Cancer Sci. 2017;108(5):1013–21. https://doi.org/10.1111/cas.13227.

CAS  Article  PubMed  PubMed Central  Google Scholar 

28.

Kawamura J, Sugiura F, Sukegawa Y, Yoshioka Y, Hida JI, Hazama S, et al. Multicenter, phase II clinical trial of peptide vaccination with oral chemotherapy following curative resection for stage III colorectal cancer. Oncol Lett. 2018;15(4):4241–7. https://doi.org/10.3892/ol.2018.7905.

CAS  Article  PubMed  PubMed Central  Google Scholar 

29.

Ye H, et al. Mini-array of multiple tumor-associated antigens (TAAs) in the immunodiagnosis of breast cancer. Oncol Lett. 2013;5(2):663–8. https://doi.org/10.3892/ol.2012.1062.

CAS  Article  PubMed  PubMed Central  Google Scholar 

30.

Liu W, Wang P, Li Z, Xu W, Dai L, Wang K, et al. Evaluation of tumour-associated antigen (TAA) miniarray in immunodiagnosis of colon cancer. Scand J Immunol. 2009;69(1):57–63. https://doi.org/10.1111/j.1365-3083.2008.02195.x.

CAS  Article  PubMed  PubMed Central  Google Scholar 

31.

Lipman NS, et al. Monoclonal versus polyclonal antibodies: distinguishing characteristics, applications, and information resources. ILAR J. 2005;46(3):258–68.

CAS  PubMed  Article  PubMed Central  Google Scholar 

32.

Eyvazi S, Kazemi B, Dastmalchi S, Bandehpour M. Involvement of CD24 in multiple cancer related pathways makes it an interesting new target for cancer therapy. Curr Cancer Drug Targets. 2018;18(4):328–36. https://doi.org/10.2174/1570163814666170818125036.

CAS  Article  PubMed  PubMed Central  Google Scholar 

33.

Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biol. 2019;13:33.

CAS  Google Scholar 

34.

Muhammad S, Jiang Z, Liu Z, Kaur K, Wang X. The role of EGFR monoclonal antibodies (MoABs) cetuximab/panitumab, and BRAF inhibitors in BRAF mutated colorectal cancer. J Gastrointestinal Oncol. 2013;4(1):72–81. https://doi.org/10.3978/j.issn.2078-6891.2012.044.

CAS  Article  Google Scholar 

35.

Giordano G, et al. Immune resistance and EGFR antagonists in colorectal Cancer. Cancers. 2019;11(8):1089.

CAS  PubMed Central  Article  Google Scholar 

36.

Sforza V, et al. Mechanisms of resistance to anti-epidermal growth factor receptor inhibitors in metastatic colorectal cancer. World J Gastroenterol. 2016;22(28):6345.

PubMed  PubMed Central  Article  Google Scholar 

37.

Tintelnot J, Baum N, Schultheiß C, Braig F, Trentmann M, Finter J, et al. Nanobody targeting of epidermal growth factor receptor (EGFR) Ectodomain variants overcomes resistance to therapeutic EGFR antibodies. Mol Cancer Ther. 2019;18(4):823–33. https://doi.org/10.1158/1535-7163.MCT-18-0849.

CAS  Article  PubMed  PubMed Central  Google Scholar 

38.

Roovers RC, Vosjan MJWD, Laeremans T, el Khoulati R, de Bruin RCG, Ferguson KM, et al. A biparatopic anti-EGFR nanobody efficiently inhibits solid tumour growth. Int J Cancer. 2011;129(8):2013–24. https://doi.org/10.1002/ijc.26145.

CAS  Article  PubMed  PubMed Central  Google Scholar 

39.

Pérez Escanda D. Obtención de nanobodies que bloqueen la interacción de PD1 con PD-L1; 2016.

Google Scholar 

40.

留言 (0)

沒有登入
gif