The repair gene BACH1 - a potential oncogene

Cantor SB, Bell DW, Ganesan S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001;105:149-60.

Hall JM, Lee MK, Newman BM, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science 1990;250:1684-9.

Hirota Y, Lahti JM. Characterization of the enzymatic activity of hChlR1, a novel human DNA helicase. Nucleic Acids Res 2000;28:917-24.

Cantor S, Drapkin R, Zhang F, et al. The BRCA1-associated protein BACH1 is a DNA helicase targeted by clinically relevant inactivating mutations. PNAS 2004;101:2357-62.

Levran O, Attwooll C, Henry RT, et al. The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 2005;37:931-3.

Kumaraswamy E, Shiekhattar R. Activation of BRCA1/BRCA2-associated helicase BACH1 is required for timely progression through S phase. Mol Cell Biol 2007;27:6733-41.

Brosh Jr RM. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 2013;13:542-58.

Gong Z, Kim JE, Leung CC, et al. BACH1/FANCJ acts with TopBP1 and participates early in DNA replication checkpoint control. Mol Cell 2010;37:438-46.

Peng M, Litman R, Jin Z, et al. BACH1 is a DNA repair protein supporting BRCA1 damage response. Oncogene 2006;25:2245-53.

Cantor SB, Xie J. Assessing the link between BACH1/FANCJ and MLH1 in DNA crosslink repair. Environ Mol Mutagen 2010;51:500-7.

Brosh Jr RM, Cantor SB. Molecular and cellular functions of the FANCJ DNA helicase defective in cancer and in Fanconi anemia. Front Genet 2014;5:372-14.

Sarkies P, Murat P, Phillips LG, et al. FANCJ coordinates two pathways that maintain epigenetic stability at G-quadruplex DNA. Nucleic Acids Res 2012;40:1485-98.

Wu CG, Spies M. G-quadruplex recognition and remodeling by the FANCJ helicase. Nucleic Acids Res 2016;44:8742-53.

Schwab RA, Nieminuszczy J, Shin-ya K, Niedzwiedz W. FANCJ couples replication past natural fork barriers with maintenance of chromatin structure. J. Cell Biol 2013;201:33-48.

Varizhuk A, Isaakova E, Pozmogova G. DNA G‐quadruplexes (g4s) modulate epigenetic (Re) programming and chromatin remodeling. BioEssays 2019;41:1900091-101.

Inoue A, Hyle J, Lechner MS, Lahti JM. Mammalian ChlR1 has a role in heterochromatin organization. Exp Cell Res 2011;317:2522-35.

Wu Y, Brosh Jr RM. FANCJ helicase operates in the Fanconi Anemia DNA repair pathway and the response to replicational stress. Curr Mol Med 2009;9:470-82.

Alter BP. Diagnosis, genetics, and management of inherited bone marrow failure syndromes. Am J Hematol 2007;2007:29-39.

Seal S, Thompson D, Renwick A, et al. Truncating mutations in the Fanconi anemia J gene BRIP1 are low-penetrance breast cancer susceptibility alleles. Nat Genet 2006;38:1239-41.

Oussalah A, Avogbe PH, Guyot E, et al. BRIP1 coding variants are associated with a high risk of hepatocellular carcinoma occurrence in patients with HCV-or HBV-related liver disease. Oncotarget 2017;8:62842-57.

Peng M, Litman R, Xie J, et al. The FANCJ/MutLα interaction is required for correction of the cross‐link response in FA‐J cells. EMBO J 2007;26:3238-49.

Williams SA, Wilson JB, Clark AP, et al. Functional and physical interaction between the mismatch repair and FA-BRCA pathways. Hum Mol Genet 2011;20:4395-410.

Yeom G, Kim J, Park CJ. Investigation of the core binding regions of human Werner syndrome and Fanconi anemia group J helicases on replication protein A. Sci Rep 2019;9:1-10.

Estep KN, Brosh Jr RM. RecQ and Fe-S helicases have unique roles in DNA metabolism dictated by their unwinding directionality, substrate specificity, and protein interactions. Biochem Soc Trans 2018;46:77-95.

Awate S, Brosh Jr RM. Interactive roles of DNA helicases and translocases with the single-stranded DNA binding protein RPA in nucleic acid metabolism. Int J Mol Sci 2017;18:1-25.

Dhar S, Brosh RM. BLM’s balancing act and the involvement of FANCJ in DNA repair. Cell Cycle 2018;17:2207-20.

Yu X, Chini CC, He M, et al. The BRCT domain is a phospho-protein binding domain. Science 2003;302:639-42.

Wu W, Togashi Y, Johmura Y, et al. HP1 regulates the localization of FANCJ at sites of DNA double‐strand breaks. CANCER Sci 2016;107:1406-15.

Yarden RI, Pardo-Reoyo S, Sgagias M, et al. BRCA1 regulates the G2/M checkpoint by activating Chk1 kinase upon DNA damage. Nat Genet 2002;30:285-9.

Greenberg RA, Sobhian B, Pathania S, et al. Multifactorial contributions to an acute DNA damage response by BRCA1/BARD1-containing complexes. Genes Dev 2006;20:34-46.

Suhasini AN, Sommers JA, Muniandy PA, et al. Fanconi anemia group J helicase and MRE11 nuclease interact to facilitate the DNA damage response. Mol Cell Biol 2013;33:2212-27.

Shakya R, Reid LJ, Reczek CR, et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011;334:525-8.

Zhang X, Guo J, Wei X, et al. Bach1: function, regulation, and involvement in disease. Oxid Med Cell Longev 2018;1-8.

Atkinson J, McGlynn P. Replication fork reversal and the maintenance of genome stability. Nucleic Acids Res 2009;37:3475-92.

Wu Y, Shin-ya K, Brosh RM. FANCJ helicase defective in Fanconia anemia and breast cancer unwinds G-quadruplex DNA to defend genomic stability. Mol Cell Biol 2008;28:4116-28.

Wu W, Rokutanda N, Takeuchi J, et al. HERC2 facilitates BLM and WRN helicase complex interaction with RPA to suppress G-quadruplex DNA. Cancer Res 2018;78:6371-85.

Cantor SB, Nayak S. FANCJ at the FORK. Mutat Res 2016;788:7-11.

Gupta R, Sharma S, Sommers JA, et al. Analysis of the DNA substrate specificity of the human BACH1 helicase associated with breast cancer. J Biol Chem 2005;280:25450-60.

Gupta R, Sharma S, Sommers JA, et al. FANCJ (BACH1) helicase forms DNA damage inducible foci with replication protein A and interacts physically and functionally with the single-stranded DNA-binding protein. Blood 2007;110:2390-8.

Sommers JA, Banerjee T, Hinds T, et al. Novel function of the Fanconi anemia group J or RECQ1 helicase to disrupt protein-DNA complexes in a replication protein A-stimulated manner. J Biol Chem 2014;289:19928-41.

Schwartz MF, Duong JK, Sun Z, et al. Rad9 phosphorylation sites couple Rad53 to the Saccharomyces cerevisiae DNA damage checkpoint. Mol Cell 2002;9:1055-65.

Xie J, Litman R, Wang S, Peng M, et al. Targeting the FANCJ-BRCA1 interaction promotes a switch from recombination to polη-dependent bypass. Oncogene 2010;29:2499-508.

Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2013;2:130-43.

Xie J, Peng M, Guillemette S, et al. FANCJ/BACH1 acetylation at lysine 1249 regulates the DNA damage response. PLoS Genet 2012;8:1-14.

Savage KI, Harkin DP. BRCA1, a ‘complex’protein involved in the maintenance of genomic stability. The FEBS J 2015;282:630-46.

Dohrn L, Salles D, Siehler SY, et al. BRCA1-mediated repression of mutagenic end-joining of DNA double-strand breaks requires complex formation with BACH1. Biochem J 2012;441:919-28.

Wang X, Lui VC, Poon RT, et al. DNA damage mediated S and G2 checkpoints in human embryonal carcinoma cells. Stem Cells 2009;27:568-76.

Willis N, Rhind N. Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Division 2009;4:1-10.

Yu X, Baer R. Nuclear localization and cell cycle-specific expression of CtIP, a protein that associates with the BRCA1 tumor suppressor. J Biol Chem 2000;275:18541-9.

Anand R, Ranjha L, Cannavo E, Cejka P. Phosphorylated CtIP functions as a co-factor of the MRE11-RAD50-NBS1 endonuclease in DNA end resection. Mol Cell 2016;64:940-50.

Wang H, Li Y, Truong LN, et al. CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 2014;54:1012-21.

Peng M, Xie J, Ucher A, et al. Crosstalk between BRCA‐F anconi anemia and mismatch repair pathways prevents MSH 2‐dependent aberrant DNA damage responses. The EMBO J 2014;33:1698-712.

House N, Koch MR, Freudenreich CH. Chromatin modifications and DNA repair: beyond double-strand breaks. Front Genet 2014;5:1-18.

Lai W, Li H, Liu S, Tao Y. Connecting chromatin modifying factors to DNA damage response. Int J Mol Sci 2013;14:2355-69.

Osley MA, Shen X. Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 2006;22:671-7.

White MF. Structure, function and evolution of the XPD family of iron-sulfur-containing 5’–>3’ DNA helicases. Biochem Soc Trans 2009;37:547-51.

Wolski SC, Kuper J, Hanzelmann P, et al. Crystal structure of the FeS cluster-containing nucleotide excision repair helicase XPD. PLoS Biol 2008;6:e149.

Fan L, Fuss JO, Cheng QJ, et al. XPD helicase structures and activities: insights into the cancer and aging phenotypes from XPD mutations. Cell 2008;133:789-800.

Liu H, Rudolf J, Johnson KA, et al. Structure of the DNA repair helicase XPD. Cell 2008;133:801-12.

Wu W, Nishikawa H, Fukuda T, et al. Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage. Cancer Res 2015;75:1311-21.

Magaraki A, van der Heijden G, Sleddens-Linkels E, et al. Silencing markers are retained on pericentric heterochromatin during murine primordial germ cell development. Epigenetics Chromatin 2017;10:1-20.

Muramatsu D, Singh PB, Kimura H, et al. Pericentric heterochromatin generated by HP1 protein interaction-defective histone methyltransferase Suv39h1. J Biol Chem 2013;288:25285-96.

Yi Q, Chen Q, Liang C, et al. HP 1 links centromeric heterochromatin to centromere cohesion in mammals. EMBO reports 2018;19:1-13.

Saksouk N, Simboeck E, Déjardin J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015;8:1-7.

Yarden RI, Brody LC. BRCA1 interacts with components of the histone deacetylase complex. PNAS 1999;96:4983-8.

Groth A, Rocha W, Verreault A, Almouzni G. Chromatin challenges during DNA replication and repair. Cell 2007;128:721-33.

Liu J, Kim J, Oberdoerffer P. Metabolic modulation of chromatin: implications for DNA repair and genomic integrity. Front Genet 2013;4:1-11.

Kennedy SR, Zhang Y, Risques RA. Cancer-associated mutations but no cancer: insights into the early steps of carcinogenesis and implications for early cancer detection. Trends Cancer 2019;5:531-40.

Risques RA, Kennedy SR. Aging and the rise of somatic cancer-associated mutations in normal tissues. PLoS Genet 2018;14:1-12.

Tate JG, Bamford S, Jubb HC, et al. COSMIC: the catalogue of somatic mutations in cancer. Nucleic Acids Res 2019;47:1-7.

Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 2013;6:1-19.

Abbosh PH, Plimack ER. Molecular and clinical insights into the role and significance of mutated dna repair genes in bladder cancer. Bladder Cancer 2018;4:9-18.

Zou W, Ma X, Hua W, et al. BRIP1 inhibits the tumorigenic properties of cervical cancer by regulating RhoA GTPase activity. Oncol Lett 2015;11:551-8.

Guillemette S, Branagan A, Peng M, et al. FANCJ localization by mismatch repair is vital to maintain genomic integrity after UV irradiation. Cancer Res 2014;74:932-44.

Ali M, Delozier CD, Chaudhary U. BRIP-1 germline mutation and its role in colon cancer: presentation of two case reports and review of literature. BMC Med Genet 2019;20:1-5.

Karami F, Mehdipour P. A comprehensive focus on global spectrum of BRCA1 and BRCA2 mutations in breast cancer. Biomed Res Int 2013;1-21.

Rebbeck TR, Mitra N, Domchek SM, et al. Modification of BRCA1-associated breast and ovarian cancer risk by BRCA1-interacting genes. Cancer Res 2011;71:5792-805.

Shi J, Tong J, Cai S, et al. Correlation of the BACH1 Pro919Ser polymorphism with breast cancer risk: A literature based meta analysis and meta regression analysis. Exp Ther Med 2013;6:435-44.

Yadav BS, Chanana P, Jhamb S. Biomarkers in triple negative breast cancer: a review. World J Clin Oncol 2015;6:252-63.

Kim MC, Choi JE, Lee SJ, Bae YK. Coexistent loss of the expressions of BRCA1 and p53 predicts poor prognosis in triple-negative breast cancer. Ann Surg Oncol 2016;23:3524-30.

Saha J, Davis AJ. Unsolved mystery: the role of BRCA1 in DNA end-joining. J Radiat Res 2016;57:i18-i24.

Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687-96.

Thangaraju M, Kaufmann SH, Couch FJ. BRCA1 facilitates stress-induced apoptosis in breast and ovarian cancer cell lines. J Biol Chem 2000;275:33487-96.

Biganzoli E, Coradini D, Ambrogi F, et al. P53 status identifies two subgroups of triple-negative breast cancers with distinct biological features. Jpn J Clin Oncol 2011;41:172-9.

Dumay A, Feugeas JP, Wittmer E, et al. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 2013;132:1227-31.

Eelen G, Bempt IV, Verlinden L, et al. Expression of the BRCA1-interacting protein Brip1/BACH1/FANCJ is driven by E2F and correlates with human breast cancer malignancy. Oncogene 2008;27:4233-41.

Gupta I, Ouhtit A, Al-Ajmi A, et al. BRIP1 overexpression is correlated with clinical features and survival outcome of luminal breast cancer subtypes. Endocr Connect 2018;7:65-77.

Chakraborty A, Katarkar A, Chaudhuri K, Mukhopadhyay A. Detection of a novel mutation in exon 20 of the BRCA1 gene. Cell Mol Biol Lett 2013;18:631-8.

Venkateshwari A, Clark DW, Nallari P, et al. BRIP1/FANCJ mutation analysis in a family with history of male and female breast Cancer in India. J Breast Cancer 2017;20:104-7.

Pabalan N, Jarjanazi H, Ozcelik H. Association between BRIP1 (BACH1) polymorphisms and breast cancer risk: a meta-analysis. Breast Cancer Res 2013;137:553-8.

De Nicolo A, Tancredi M, Lombardi G, et al. A novel breast cancer–associated BRIP1 (FANCJ/BACH1) germ-line mutation impairs protein stability and function. Clin Cancer Res 2008;14:4672-80.

Momenimovahed Z, Tiznobaik A, Taheri S, Salehiniya H. Ovarian cancer in the world: epidemiology and risk factors. Int J Womens Health 2019;11:287-99.

Moorman PG, Calingaert B, Palmieri RT, et al. Hormonal risk factors for ovarian cancer in premenopausal and postmenopausal women. Am J Epidemiol 2008;167:1059-69.

Ness RB, Cramer DW, Goodman MT, et al. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. Am J Epidemiol 2002;155:217-24.

Su KM, Wang PH, Yu MH, et al. The recent progress and therapy in endometriosis-associated ovarian cancer. J Chin Med Assoc 2020;83:227-32.

Gee ME, Faraahi Z, McCormick A, Edmondson RJ. DNA damage repair in ovarian cancer: unlocking the heterogeneity. J Ovarian Res 2018;11:1-12.

Chen CC, Feng W, Lim PX, et al. Homology-directed repair and the role of BRCA1, BRCA2, and related proteins in genome integrity and cancer. Annu Rev Cancer Biol 2018;2:313-36.

Schildkraut JM, Iversen ES, Wilson MA, et al. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer. PLoS One 2010;5:1-9.

Song H, Ramus SJ, Kjaer SK, et al. Tagging single nucleotide polymorphisms in the BRIP1 gene and susceptibility to breast and ovarian cancer. PLoS One 2007;2:1-7.

Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA Cancer J Clin 2015;65:87-108.

Gao Y, Wang B, Gao S. BRD7 acts as a tumor suppressor gene in lung adenocarcinoma. PLoS One 2016;11:1-9.

Waqar SN, Devarakonda SH, Michel LS, et al. BRCAness in non-small cell lung cancer (NSCLC). J Clin Oncol 2014;32:11033-.

Bartolucci R, Wei J, Sanchez JJ, et al. XPG mRNA expression levels modulate prognosis in resected non-small-cell lung cancer in conjunction with BRCA1 and ERCC1 expression. Clin Lung Cancer 2009;10:47-52.

Zhang J, Wang X, Lin CJ, et al. Altered expression of FANCL confers mitomycin C sensitivity in Calu-6 lung cancer cells. Cancer Biol Ther 2006;5:1632-6.

Jamal-Hanjani M, Wilson GA, Horswell S, et al. Detection of ubiquitous and heterogeneous mutations in cell-free DNA from patients with early-stage non-small-cell lung cancer. Ann Oncol 2016;27:862-7.

Haruki N, Saito H, Tatematsu Y, et al. Histological type-selective, tumor-predominant expression of a novel CHK1 isoform and infrequent in vivo somatic CHK2 mutation in small cell lung cancer. Cancer Res 2000;60:4689-92.

Marsit CJ, Liu M, Nelson HH, et al. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene 2004;23:1000-4.

留言 (0)

沒有登入
gif