1.
Lee, BK, Magnusson, C, Gardner, RM, et al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders. Brain Behav Immun. 2015;44:100-105.
Google Scholar |
Crossref |
Medline |
ISI2.
Aguilar-Valles, A, Rodrigue, B, Matta-Camacho, E. Maternal immune activation and the development of dopaminergic neurotransmission of the offspring: relevance for schizophrenia and other psychoses. Front Psychiatry. 2020;11:852.
Google Scholar |
Crossref |
Medline3.
McAlonan, GM, Li, Q, Cheung, C. The timing and specificity of prenatal immune risk factors for autism modeled in the mouse and relevance to schizophrenia. Neurosignals. 2010;18:129-139.
Google Scholar |
Crossref |
Medline4.
Solek, CM, Farooqi, N, Verly, M, Lim, TK, Ruthazer, ES. Maternal immune activation in neurodevelopmental disorders. Dev Dyn. 2018;247:588-619.
Google Scholar |
Crossref |
Medline5.
Choi, GB, Yim, YS, Wong, H, et al. The maternal interleukin-17a pathway in mice promotes autism-like phenotypes in offspring. Science. 2016;351:933-939.
Google Scholar |
Crossref |
Medline6.
Shin Yim, Y, Park, A, Berrios, J, et al. Reversing behavioural abnormalities in mice exposed to maternal inflammation. Nature. 2017;549:482-487.
Google Scholar |
Crossref |
Medline7.
Reed, MD, Yim, YS, Wimmer, RD, et al. IL-17a promotes sociability in mouse models of neurodevelopmental disorders. Nature. 2020;577:249-253.
Google Scholar |
Crossref |
Medline8.
Gumusoglu, SB, Hing, BWQ, Chilukuri, ASS, Dewitt, JJ, Scroggins, SM, Stevens, HE. Chronic maternal interleukin-17 and autism-related cortical gene expression, neurobiology, and behavior. Neuropsychopharmacology. 2020;45:1008-1017.
Google Scholar |
Crossref |
Medline9.
Wong, H, Hoeffer, C. Maternal IL-17A in autism. Exp Neurol. 2018;299:228-240.
Google Scholar |
Crossref |
Medline10.
Sasaki, T, Tome, S, Takei, Y. Intraventricular IL-17A administration activates microglia and alters their localization in the mouse embryo cerebral cortex. Mol Brain. 2020;13:93.
Google Scholar |
Crossref |
Medline11.
Munn, DH, Zhou, M, Attwood, JT, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science. 1998;281:1191-1193.
Google Scholar |
Crossref |
Medline |
ISI12.
Schwarcz, R, Rassoulpour, A, Wu, HQ, Medoff, D, Tamminga, CA, Roberts, RC. Increased cortical kynurenate content in schizophrenia. Biol Psychiatry. 2001;50:521-530.
Google Scholar |
Crossref |
Medline |
ISI13.
Erhardt, S, Blennow, K, Nordin, C, Skogh, E, Lindstrom, LH, Engberg, G. Kynurenic acid levels are elevated in the cerebrospinal fluid of patients with schizophrenia. Neurosci Lett. 2001;313:96-98.
Google Scholar |
Crossref |
Medline |
ISI14.
Pershing, ML, Bortz, DM, Pocivavsek, A, et al. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: implications for schizophrenia. Neuropharmacology. 2015;90:33-41.
Google Scholar |
Crossref |
Medline15.
Erhardt, S, Pocivavsek, A, Repici, M, et al. Adaptive and behavioral changes in kynurenine 3-monooxygenase knockout mice: relevance to psychotic disorders. Biol Psychiatry. 2017;82:756-765.
Google Scholar |
Crossref |
Medline16.
Tashiro, T, Murakami, Y, Mouri, A, et al. Kynurenine 3-monooxygenase is implicated in antidepressants-responsive depressive-like behaviors and monoaminergic dysfunctions. Behav Brain Res. 2017;317:279-285.
Google Scholar |
Crossref |
Medline17.
Goeden, N, Notarangelo, FM, Pocivavsek, A, Beggiato, S, Bonnin, A, Schwarcz, R. Prenatal dynamics of kynurenine pathway metabolism in mice: focus on kynurenic acid. Dev Neurosci. 2017;39:519-528.
Google Scholar |
Crossref |
Medline18.
Pocivavsek, A, Thomas, MA, Elmer, GI, Bruno, JP, Schwarcz, R. Continuous kynurenine administration during the prenatal period, but not during adolescence, causes learning and memory deficits in adult rats. Psychopharmacology. 2014;231:2799-2809.
Google Scholar |
Crossref |
Medline19.
Murakami, Y, Ishibashi, T, Tomita, E, et al. Depressive symptoms as a side effect of Interferon-alpha therapy induced by induction of indoleamine 2,3-dioxygenase 1. Sci Rep. 2016;6:29920.
Google Scholar |
Crossref |
Medline20.
Liu, XC, Holtze, M, Powell, SB, et al. Behavioral disturbances in adult mice following neonatal virus infection or kynurenine treatment – role of brain kynurenic acid. Brain Behav Immun. 2014;36:80-89.
Google Scholar |
Crossref |
Medline21.
Murakami, Y, Imamura, Y, Saito, K, Sakai, D, Motoyama, J. Altered kynurenine pathway metabolites in a mouse model of human attention-deficit hyperactivity/autism spectrum disorders: a potential new biological diagnostic marker. Sci Rep. 2019;9:13182.
Google Scholar |
Crossref |
Medline22.
Bolivar, VJ, Caldarone, BJ, Reilly, AA, Flaherty, L. Habituation of activity in an open field: a survey of inbred strains and F1 hybrids. Behav Genet. 2000;30:285-293.
Google Scholar |
Crossref |
Medline23.
Mouri, A, Koseki, T, Narusawa, S, et al. Mouse strain differences in phencyclidine-induced behavioural changes. Int J Neuropsychopharmacol. 2012;15:767-779.
Google Scholar |
Crossref |
Medline24.
Halassa, MM, Acsady, L. Thalamic inhibition: diverse sources, diverse scales. Trends Neurosci. 2016;39:680-693.
Google Scholar |
Crossref |
Medline25.
Garcia, KO, Ornellas, FL, Martin, PK, et al. Therapeutic effects of the transplantation of VEGF overexpressing bone marrow mesenchymal stem cells in the hippocampus of murine model of Alzheimer’s disease. Front Aging Neurosci. 2014;6:30.
Google Scholar |
Crossref |
Medline26.
Kubo, H, Hoshi, M, Mouri, A, et al. Absence of kynurenine 3-monooxygenase reduces mortality of acute viral myocarditis in mice. Immunol Lett. 2017;181:94-100.
Google Scholar |
Crossref |
Medline27.
Clark, SM, Notarangelo, FM, Li, X, Chen, S, Schwarcz, R, Tonelli, LH. Maternal immune activation in rats blunts brain cytokine and kynurenine pathway responses to a second immune challenge in early adulthood. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:286-294.
Google Scholar |
Crossref |
Medline28.
Dhillion, P, Wallace, K, Herse, F, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303:R353-R358.
Google Scholar |
Crossref |
Medline29.
Notarangelo, FM, Pocivavsek, A. Elevated kynurenine pathway metabolism during neurodevelopment: implications for brain and behavior. Neuropharmacology. 2017;112:275-285.
Google Scholar |
Crossref |
Medline30.
Sedlmayr, P, Blaschitz, A, Stocker, R. The role of placental tryptophan catabolism. Front Immunol. 2014;5:230.
Google Scholar |
Crossref |
Medline31.
Aghaeepour, N, Ganio, EA, McIlwain, D, et al. An immune clock of human pregnancy. Sci Immunol. 2017;2:eaan2946.
Google Scholar |
Crossref |
Medline32.
Romani, L, Zelante, T, De Luca, A, Fallarino, F, Puccetti, P. IL-17 and therapeutic kynurenines in pathogenic inflammation to fungi. J Immunol. 2008;180:5157-5162.
Google Scholar |
Crossref |
Medline33.
Krause, R, Zollner-Schwetz, I, Salzer, HJ, et al. Elevated levels of interleukin 17A and kynurenine in candidemic patients, compared with levels in noncandidemic patients in the intensive care unit and those in healthy controls. J Infect Dis. 2015;211:445-451.
Google Scholar |
Crossref |
Medline34.
Rahman, MT, Ghosh, C, Hossain, M, et al. IFN-gamma, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun. 2018;507:274-279.
Google Scholar |
Crossref |
Medline35.
Forrest, CM, Khalil, OS, Pisar, M, Darlington, LG, Stone, TW. Prenatal inhibition of the tryptophan-kynurenine pathway alters synaptic plasticity and protein expression in the rat hippocampus. Brain Res. 2013;1504:1-15.
Google Scholar |
Crossref |
Medline36.
Forrest, CM, Khalil, OS, Pisar, M, et al. Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway. Neuroscience. 2013;254:241-259.
Google Scholar |
Crossref |
Medline37.
Pisar, M, Forrest, CM, Khalil, OS, et al. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res. 2014;1576:1-17.
Google Scholar |
Crossref |
Medline38.
Khalil, OS, Pisar, M, Forrest, CM, Vincenten, MC, Darlington, LG, Stone, TW. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur J Neurosci. 2014;39:1558-1571.
Google Scholar |
Crossref |
Medline39.
Forrest, CM, McNair, K, Pisar, M, Khalil, OS, Darlington, LG, Stone, TW. Altered hippocampal plasticity by prenatal kynurenine administration, kynurenine-3-monoxygenase (KMO) deletion or galantamine. Neuroscience. 2015;310:91-105.
Google Scholar |
Crossref |
Medline40.
Iaccarino, HF, Suckow, RF, Xie, S, Bucci, DJ. The effect of transient increases in kynurenic acid and quinolinic acid levels early in life on behavior in adulthood: implications for schizophrenia. Schizophr Res. 2013;150:392-397.
Google Scholar |
Crossref |
Medline |
ISI41.
Pershing, ML, Phenis, D, Valentini, V, et al. Prenatal kynurenine exposure in rats: age-dependent changes in NMDA receptor expression and conditioned fear responding. Psychopharmacology. 2016;233:3725-3735.
Google Scholar |
Crossref |
Medline42.
Varga, D, Heredi, J, Kanvasi, Z, et al. Systemic L-Kynurenine sulfate administration disrupts object recognition memory, alters open field behavior and decreases c-Fos immunopositivity in C57Bl/6 mice. Front Behav Neurosci. 2015;9:157.
Google Scholar |
Crossref |
Medline43.
Lim, CK, Essa, MM, de Paula Martins, R, et al. Altered kynurenine pathway metabolism in autism: implication for immune-induced glutamatergic activity. Autism Res. 2016;9:621-631.
Google Scholar |
Crossref |
Medline44.
Guillemin, GJ. Quinolinic acid, the inescapable neurotoxin. FEBS J. 2012;279:1356-1365.
Google Scholar |
Crossref |
Medline |
ISI45.
Liang, Y, Ke, X, Xiao, Z, et al. Untargeted metabolomic profiling using UHPLC-QTOF/MS reveals metabolic alterations associated with Autism. Biomed Res Int. 2020;2020:6105608.
Google Scholar |
Crossref |
Medline46.
Oxenkrug, G, van der Hart, M, Roeser, J, Summergrad, P. Anthranilic acid: a potential biomarker and treatment target for schizophrenia. Ann Psychiatry Ment Health. 2016;4:1059.
Google Scholar |
Medline47.
Bryn, V, Verkerk, R, Skjeldal, OH, Saugstad, OD, Ormstad, H. Kynurenine pathway in autism spectrum disorders in children. Neuropsychobiology. 2017;76:82-88.
Google Scholar |
Crossref |
Medline48.
Haslinger, D, Waltes, R, Yousaf, A, et al. Loss of the Chr16p11.2 ASD candidate gene QPRT leads to aberrant neuronal differentiation in the SH-SY5Y neuronal cell model. Mol Autism. 2018;9:56.
Google Schol
留言 (0)