Progress and prospects of mechanotransducers in shear stress-sensitive signaling pathways in association with arteriovenous malformation

Survivin-induced abnormal ploidy contributes to cystic kidney and aneurysm formation.

Circulation. 129: 660-672https://doi.org/10.1161/CIRCULATIONAHA.113.005746

Flow detection and calcium signalling in vascular endothelial cells.

Cardiovasc. Res. 99: 260-268https://doi.org/10.1093/cvr/cvt084

Anti-angiogenic therapeutic strategies in hereditary hemorrhagic telangiectasia.

Front. Genet. 6: 35https://doi.org/10.3389/fgene.2015.00035

Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development.

Dev. Biol. 217: 42-53https://doi.org/10.1006/dbio.1999.9534

Fluid shear stress sensing in vascular homeostasis and remodeling: towards the development of innovative pharmacological approaches to treat vascular dysfunction.

Biochem. Pharmacol. 158: 185-191https://doi.org/10.1016/j.bcp.2018.10.023

Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia.

J. Cell Biol. 214: 807-816https://doi.org/10.1083/jcb.201603106Bai J. Zhao Y. Dou C. Zhang Z.

Expression and role of Caveolin-1 in the angiogenesis of cerebral arteriovenous malformation.

Zhonghua Yi Xue Za Zhi. 94: 3425-3428

The less-often-traveled surface of stem cells: caveolin-1 and caveolae in stem cells, tissue repair and regeneration.

Stem Cell Res Ther. 4: 90https://doi.org/10.1186/scrt276Barbosa Do Prado L. Han C. Oh S.P. Su H.

Recent advances in basic research for brain arteriovenous malformation.

Int. J. Mol. Sci. 20https://doi.org/10.3390/ijms20215324Bayrak-Toydemir P. et al.

A fourth locus for hereditary hemorrhagic telangiectasia maps to chromosome 7.

Am. J. Med. Genet. A. 140: 2155-2162https://doi.org/10.1002/ajmg.a.31450Begbie M.E. Wallace G.M. Shovlin C.L.

Hereditary haemorrhagic telangiectasia (Osler-Weber-Rendu syndrome): a view from the 21st century.

Postgrad. Med. J. 79: 18-24https://doi.org/10.1136/pmj.79.927.18Berg J.N. Guttmacher A.E. Marchuk D.A. Porteous M.E.

Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin?.

J. Med. Genet. 33: 256-257https://doi.org/10.1136/jmg.33.3.256Boselli F. Freund J.B. Vermot J.

Blood flow mechanics in cardiovascular development.

Cell. Mol. Life Sci. 72: 2545-2559https://doi.org/10.1007/s00018-015-1885-3Bourdeau A. Dumont D.J. Letarte M.

A murine model of hereditary hemorrhagic telangiectasia.

J. Clin. Invest. 104: 1343-1351https://doi.org/10.1172/JCI8088Braverman I.M. Keh A. Jacobson B.S.

Ultrastructure and three-dimensional organization of the telangiectases of hereditary hemorrhagic telangiectasia.

J. Invest. Dermatol. 95: 422-427https://doi.org/10.1111/1523-1747.ep12555569

Pulsatile shear and Gja5 modulate arterial identity and remodeling events during flow-driven arteriogenesis.

Development (Cambridge, England). 137: 2187-2196https://doi.org/10.1242/dev.045351Bystrevskaya V.B. Lichkun V.V. Antonov A.S. Perov N.A.

An ultrastructural study of centriolar complexes in adult and embryonic human aortic endothelial cells.

Tissue Cell. 20: 493-503https://doi.org/10.1016/0040-8166(88)90052-3

Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice.

Proc. Natl. Acad. Sci. U. S. A. 102: 9884-9889https://doi.org/10.1073/pnas.0504391102Chang C.J. Wu L.S. Hsu L.A. Chang G.J. Chen C.F. Yeh H.I. Ko Y.S.

Differential endothelial gap junction expression in venous vessels exposed to different hemodynamics.

J. Histochem. Cytochem. 58: 1083-1092https://doi.org/10.1369/jhc.2010.956425Chaudhary M.W. Al-Baradie R.S.

Ataxia-telangiectasia: future prospects.

Appl. Clin. Genet. 7: 159-167https://doi.org/10.2147/TACG.S35759Chen K.D. Li Y.S. Kim M. Li S. Yuan S. Chien S. Shyy J.Y.

Mechanotransduction in response to shear stress. Roles of receptor tyrosine kinases, integrins, and Shc.

J. Biol. Chem. 274: 18393-18400https://doi.org/10.1074/jbc.274.26.18393Choi E.J. Chen W. Jun K. Arthur H.M. Young W.L. Su H.

Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia.

PLoS One. 9e88511https://doi.org/10.1371/journal.pone.0088511Cole S.G. Begbie M.E. Wallace G.M. Shovlin C.L.

A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5.

J. Med. Genet. 42: 577-582https://doi.org/10.1136/jmg.2004.028712Corti P. Young S. Chen C.Y. Patrick M.J. Rochon E.R. Pekkan K. Roman B.L.

Interaction between alk1 and blood flow in the development of arteriovenous malformations.

Development. 138: 1573-1582https://doi.org/10.1242/dev.060467

Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development.

Dev. Cell. 18: 698-712https://doi.org/10.1016/j.devcel.2010.04.008

Angiopoietin-2 inhibition rescues arteriovenous malformation in a smad4 hereditary hemorrhagic telangiectasia mouse model.

Circulation. 139: 2049-2063https://doi.org/10.1161/CIRCULATIONAHA.118.036952

Genetic epidemiology of hereditary hemorrhagic telangiectasia in a local community in the northern part of Japan.

Hum. Mutat. 19: 140-148https://doi.org/10.1002/humu.10026David L. Mallet C. Mazerbourg S. Feige J.J. Bailly S.

Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells.

Blood. 109: 1953-1961https://doi.org/10.1182/blood-2006-07-034124David L. Feige J.J. Bailly S.

Emerging role of bone morphogenetic proteins in angiogenesis.

Cytokine Growth Factor Rev. 20: 203-212https://doi.org/10.1016/j.cytogfr.2009.05.001

Endothelial cell-cell junctions: happy together.

Nat. Rev. Mol. Cell Biol. 5: 261-270https://doi.org/10.1038/nrm1357

Prolonged fluid shear stress induces a distinct set of endothelial cell genes, most specifically lung Kruppel-like factor (KLF2).

Blood. 100: 1689-1698https://doi.org/10.1182/blood-2002-01-0046Derynck R. Zhang Y. Feng X.H.

Smads: transcriptional activators of TGF-beta responses.

Cell. 95: 737-740https://doi.org/10.1016/s0092-8674(00)81696-7

Endothelial primary cilia inhibit atherosclerosis.

EMBO Rep. 17: 156-166https://doi.org/10.15252/embr.201541019

Endothelial dysfunction in pulmonary arterial hypertension: loss of cilia length regulation upon cytokine stimulation.

Pulm. Circ. 8https://doi.org/10.1177/2045894018764629Ebong E.E. Kim S. DePaola N.

Flow regulates intercellular communication in HAEC by assembling functional Cx40 and Cx37 gap junctional channels.

Am. J. Phys. Heart Circ. Phys. 290: H2015-H2023https://doi.org/10.1152/ajpheart.00204.2005

Caveolae – mechanosensitive membrane invaginations linked to actin filaments.

J. Cell Sci. 128: 2747https://doi.org/10.1242/jcs.153940

Molecular regulation of arteriovenous endothelial cell specification.

F1000Research. 8https://doi.org/10.12688/f1000research.16701.1Fang J. Chen X. Zhu B. Ye H. Zhang W. Guan J. Su K.

Thalidomide for epistaxis in patients with hereditary hemorrhagic telangiectasia: a preliminary study.

Otolaryngol. Head Neck Surg. 157: 217-221https://doi.org/10.1177/0194599817700573

Shear-induced Notch-Cx37-p27 axis arrests endothelial cell cycle to enable arterial specification.

Nat. Commun. 8: 2149https://doi.org/10.1038/s41467-017-01742-7Ferreira R. Santos T. Amar A. Tahara S.M. Chen T.C. Giannotta S.L. Hofman F.M.

MicroRNA-18a improves human cerebral arteriovenous malformation endothelial cell function.

Stroke. 45: 293-297https://doi.org/10.1161/STROKEAHA.113.003578Figueroa X.F. Duling B.R.

Gap junctions in the control of vascular function.

Antioxid. Redox Signal. 11: 251-266https://doi.org/10.1089/ars.2008.2117Fleming I. Fisslthaler B. Dixit M. Busse R.

Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells.

J. Cell Sci. 118: 4103-4111https://doi.org/10.1242/jcs.02541

Src42A-dependent polarized cell shape changes mediate epithelial tube elongation in Drosophila.

Nat. Cell Biol. 14: 526-534https://doi.org/10.1038/ncb2456

Dynamic endothelial cell rearrangements drive developmental vessel regression.

PLoS Biol. 13e1002125https://doi.org/10.1371/journal.pbio.1002125

A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4).

Lancet. 363: 852-859https://doi.org/10.1016/S0140-6736(04)15732-2

SMAD4 mutations found in unselected HHT patients.

J. Med. Genet. 43: 793-797https://doi.org/10.1136/jmg.2006.041517

Overlapping spectra of SMAD4 mutations in juvenile polyposis (JP) and JP-HHT syndrome.

Am. J. Med. Genet. A. 152A: 333-339https://doi.org/10.1002/ajmg.a.33206Garrido-Martin E.M. et al.

Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models--brief report.

Arterioscler. Thromb. Vasc. Biol. 34: 2232-2236https://doi.org/10.1161/ATVBAHA.114.303984Gimbrone Jr., M.A. Topper J.N. Nagel T. Anderson K.R. Garcia-Cardeña G.

Endothelial dysfunction, hemodynamic forces, and atherogenesis.

Ann. N. Y. Acad. Sci. 902 (): 230-239

Endothelial mechanosignaling: does one sensor fit all?.

Antioxid. Redox Signal. 25: 373-388https://doi.org/10.1089/ars.2015.6493

Interaction between ALK1 signaling and Connexin40 in the development of arteriovenous malformations.

Arterioscler. Thromb. Vasc. Biol. 36: 707-717https://doi.org/10.1161/atvbaha.115.306719

Endothelial cilia mediate low flow sensing during zebrafish vascular development.

Cell Rep. 6: 799-808https://doi.org/10.1016/j.celrep.2014.01.032

Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells.

J. Biol. Chem. 265: 8361-8364

Hereditary haemorrhagic telangiectasia: a clinical and scientific review.

Eur. J. Hum. Genet. 17: 860-871https://doi.org/10.1038/ejhg.2009.35Gratton J.P. Bernatchez P. Sessa W.C.

Caveolae and caveolins in the cardiovascular system.

Circ. Res. 94: 1408-1417https://doi.org/10.1161/01.res.0000129178.56294.17

Notch signaling in vascular development and physiology.

Development. 134: 2709-2718https://doi.org/10.1242/dev.004184Grosse S.D. Boulet S.L. Grant A.M. Hulihan M.M. Faughnan M.E.

The use of US health insurance data for surveillance of rare disorders: hereditary hemorrhagic telangiectasia.

Genet. Med. 16: 33-39https://doi.org/10.1038/gim.2013.66Guttmacher A.E. Marchuk D.A. White Jr., R.I.

Hereditary hemorrhagic telangiectasia.

N. Engl. J. Med. 333: 918-924https://doi.org/10.1056/NEJM199510053331407Gvaramia D. Blaauboer M.E. Hanemaaijer R. Everts V.

Role of caveolin-1 in fibrotic diseases.

Matrix Biol. 32: 307-315https://doi.org/10.1016/j.matbio.2013.03.005

Increased tissue perfusion promotes capillary dysplasia in the ALK1-deficient mouse brain following VEGF stimulation.

Am. J. Physiol. Heart Circ. Physiol. 295: H2250-H2256https://doi.org/10.1152/ajpheart.00083.2008

TGF-beta signaling from receptors to smads.

Cold Spring Harb. Perspect. Biol. 8https://doi.org/10.1101/cshperspect.a022061

Signaling receptors for TGF-beta family members.

Cold Spring Harb. Perspect. Biol. 8https://doi.org/10.1101/cshperspect.a022053Hershkovitz D. Bercovich D. Sprecher E. Lapidot M.

RASA1 mutations may cause hereditary capillary malformations without arteriovenous malformations.

Br. J. Dermatol. 158: 1035-1040https://doi.org/10.1111/j.1365-2133.2008.08493.x

Differentiation of arterial and venous endothelial cells and vascular morphogenesis.

Endothelium. 13: 137-145https://doi.org/10.1080/10623320600698078Hoffman B.D. Grashoff C. Schwartz M.A.

Dynamic molecular processes mediate cellular mechanotransduction.

Nature. 475: 316-323https://doi.org/10.1038/nature10316

MicroRNA-137 and microRNA-195* inhibit vasculogenesis in brain arteriovenous malformations.

Ann. Neurol. 82: 371-384https://doi.org/10.1002/ana.25015Huminiecki L. Goldovsky L. Freilich S. Moustakas A. Ouzounis C. Heldin C.H.

Emergence, development and diversification of the TGF-beta signalling pathway within the animal kingdom.

BMC Evol. Biol. 9: 28https://doi.org/10.1186/1471-2148-9-28Hwa J.J. Beckouche N. Huang L. Kram Y. Lindskog H. Wang R.A.

Abnormal arterial-venous fusions and fate specification in mouse embryos lacking blood flow.

Sci. Rep. 7: 11965https://doi.org/10.1038/s41598-017-12353-zIomini C. Tejada K. Mo W. Vaananen H. Piperno G.

Primary cilia of human endothelial cells disassemble under laminar shear stress.

J. Cell Biol. 164: 811-817https://doi.org/10.1083/jcb.200312133Ishikawa H. Marshall W.F.

Ciliogenesis: building the cell's antenna.

Nat. Rev. Mol. Cell Biol. 12: 222-234https://doi.org/10.1038/nrm3085Itoh S. Itoh F. Goumans M.J. Ten Dijke P.

Signaling of transforming growth factor-beta family members through Smad proteins.

Eur. J. Biochem. 267: 6954-6967https://doi.org/10.1046/j.1432-1327.2000.01828.x

Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells.

EMBO J. 23: 541-551https://doi.org/10.1038/sj.emboj.7600065

Effects of Caveolin-1-ERK1/2 pathway on endothelial cells and smooth muscle cells under shear stress.

Exp. Biol. Med. 245: 21-33https://doi.org/10.1177/1535370219892574

Endoglin prevents vascular malformation by regulating flow-induced cell migration and specification through VEGFR2 signalling.

Nat. Cell Biol. 19: 639-652https://doi.org/10.1038/ncb3534

Endothelial connexin 37, connexin 40, and connexin 43 respond uniquely to substrate and shear stress.

Endothelium. 14: 215-226https://doi.org/10.1080/10623320701617233

Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2.

Nat. Genet. 13: 189-195https://doi.org/10.1038/ng0696-189Johnstone S. Isakson B. Locke D.

Biological and biophysical properties of vascular connexin channels.

Int. Rev. Cell Mol. Biol. 278: 69-118https://doi.org/10.1016/s1937-6448(09)78002-5

Endoglin expression in early development is associated with vasculogenesis and angiogenesis.

Mech. Dev. 110: 193-196https://doi.org/10.1016/s0925-4773(01)00562-7Kallakuri S. Yu J.A. Li J. Li Y. Weinstein B.M. Nicoli S. Sun Z.

Endothelial cilia are essential for developmental vascular integrity in zebrafish.

J. Am. Soc. Nephrol. 26: 864-875https://doi.org/10.1681/ASN.2013121314Kim Y.H. Hu H. Guevara-Gallardo S. Lam M.T. Fong S.Y. Wang R.A.

Artery and vein size is balanced by Notch and ephrin B2/EphB4 during angiogenesis.

Development. 135: 3755-3764https://doi.org/10.1242/dev.022475Kiosses W.B. McKee N.H. Kalnins V.I.

Evidence for the migration of rat aortic endothelial cells toward the heart.

Arterioscler. Thromb. Vasc. Biol. 17: 2891-2896https://doi.org/10.1161/01.atv.17.11.2891Kjeldsen A.D. Vase P. Green A.

Hereditary haemorrhagic telangiectasia: a population-based study of prevalence and mortality in Danish patients.

J. Intern. Med. 245: 31-39https://doi.org/10.1046/j.1365-2796.1999.00398.xKomiyama M. Ishiguro T. Yamada O. Morisaki H. Morisaki T.

Hereditary hemorrhagic telangiectasia in Japanese patients.

J. Hum. Genet. 59: 37-41https://doi.org/10.1038/jhg.2013.113

Mechanisms of vessel pruning and regression.

Dev. Cell. 34: 5-17https://doi.org/10.1016/j.devcel.2015.06.004Krebs L.T. Shutter J.R. Tanigaki K. Honjo T. Stark K.L. Gridley T.

Haploinsufficient lethality and formation of arteriovenous malformations in Notch pathway mutants.

Genes Dev. 18: 2469-2473https://doi.org/10.1101/gad.1239204Krebs L.T. Starling C. Chervonsky A.V. Gridley T.

Notch1 activation in mice causes arteriovenous malformations phenocopied by ephrinB2 and EphB4 mutants.

Genesis. 48: 146-150https://doi.org/10.1002/dvg.20599

Life cycle of connexins in health and disease.

Biochem. J. 394: 527-543https://doi.org/10.1042/bj20051922

ALK1 signaling inhibits angiogenesis by cooperating with the Notch pathway.

Dev. Cell. 22: 489-500https://doi.org/10.1016/j.devcel.2012.02.005Laux D.W. Young S. Donovan J.P. Mansfield C.J. Upton P.D. Roman B.L.

Circulating Bmp10 acts through endothelial Alk1 to mediate flow-dependent arterial quiescence.

Development. 140: 3403-3412https://doi.org/10.1242/dev.095307Lawson N.D. Scheer N. Pham V.N. Kim C.H. Chitnis A.B. Campos-Ortega J.A. Weinstein B.M.

Notch signaling is required for arterial-venous differentiation during embryonic vascular development.

Development (Cambridge, England). 128: 3675-3683

Brain arteriovenous malformations.

Nat. Rev. Dis. Primers. 1: 15008https://doi.org/10.1038/nrdp.2015.8

Flow regulates arterial-venous differentiation in the chick embryo yolk sac.

Development (Cambridge, England). 131: 361-375https://doi.org/10.1242/dev.00929

Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction.

EMBO J. 23: 4018-4028https://doi.org/10.1038/sj.emboj.7600386Lebrin F. Deckers M. Bertolino P. Ten Dijke P.

TGF-beta receptor function in the endothelium.

Cardiovasc. Res. 65: 599-608https://doi.org/10.1016/j.cardiores.2004.10.036

Shear stress activates Tie2 receptor tyrosine kinase in human endothelial cells.

Biochem. Biophys. Res. Commun. 304: 399-404https://doi.org/10.1016/s0006-291x(03)00592-8

Genotype-phenotype correlations in hereditary hemorrhagic telangiectasia: data from the French-Italian HHT network.

Genet. Med. 9: 14-22https://doi.org/10.1097/gim.0b013e31802d8373Letteboer T.G. Mager J.J. Snijder R.J. Koeleman B.P. Lindhout D. Ploos van Amstel J.K. Westermann C.J.

Genotype-phenotype relationship in hereditary haemorrhagic telangiectasia.

J. Med. Genet. 43: 371-377https://doi.org/10.1136/jmg.2005.035451

Defective angiogenesis in mice lacking endoglin.

Science. 284: 1534-1537https://doi.org/10.1126/science.284.5419.1534Liu P. Rudick M. Anderson R.G.

Multiple functions of caveolin-1.

J. Biol. Chem. 277: 41295-41298https://doi.org/10.1074/jbc.R200020200Liu Y. Sweet D.T. Irani-Tehrani M. Maeda N. Tzima E.

Shc coordinates signals from intercellular junctions and integrins to regulate flow-induced inflammation.

J. Cell Biol. 182: 185-196https://doi.org/10.1083/jcb.200709176

Epigenetic modifications of caveolae associated proteins in health and disease.

BMC Genet. 16: 71https://doi.org/10.1186/s12863-015-0231-yLucitti J.L. Jones E.A. Huang C. Chen J. Fraser S.E. Dickinson M.E.

Vascular remodeling of the mouse yolk sac requires hemodynamic force.

Development (Cambridge, England). 134: 3317-3326https://doi.org/10.1242/dev.02883

Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts.

Nature. 401: 670-677https://doi.org/10.1038/44334Mack J.J. Iruela-Arispe M.L.

NOTCH regulation of the endothelial cell phenotype.

Curr. Opin. Hematol. 25: 212-218https://doi.org/10.1097/moh.0000000000000425

NOTCH1 is a mechanosensor in adult arteries.

Nat. Commun. 8: 1620https://doi.org/10.1038/s41467-017-01741-8

NOTCH1 is a mechanosensor in adult arteries.

Nat. Commun. 8: 1620https://doi.org/10.1038/s41467-017-01741-8

Pathogenesis of arteriovenous malformations in the absence of endoglin.

Circ. Res. 106: 1425-1433https://doi.org/10.1161/CIRCRESAHA.109.211037Marcelo K.L. Sills T.M. Coskun S. Vasavada H. Sanglikar S. Goldie L.C. Hirschi K.K.

Hemogenic endothelial cell specification requires c-Kit, Notch signaling, and p27-mediated cell-cycle control.

Dev. Cell. 27: 504-515https://doi.org/10.1016/j.devcel.2013.11.004

How cells read TGF-beta signals.

Nat. Rev. Mol. Cell Biol. 1: 169-178https://doi.org/10.1038/35043051

Endoglin, a TGF-beta binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1.

Nat. Genet. 8: 345-351https://doi.org/10.1038/ng1294-345McDonald J. Bayrak-Toydemir P. Pyeritz R.E.

Hereditary hemorrhagic telangiectasia: an overview of diagnosis, management, and pathogenesis.

Genet. Med. 13: 607-616https://doi.org/10.1097/GIM.0b013e3182136d32

Hypotrichosis-lymphedema-telangiectasia-renal defect associated with a truncating mutation in the SOX18 gene.

Clin. Genet. 87: 378-382https://doi.org/10.1111/cge.12388Morgan M.K. Davidson A.S. Assaad N.N.A. Stoodley M.A.

Critical review of brain AVM surgery, surgical results and natural history in 2017.

Acta Neurochir. 159: 1457-1478https://doi.org/10.1007/s00701-017-3217-x

ChIP-seq reveals cell type-specific binding patterns of BMP-specific Smads and a novel binding motif.

Nucleic Acids Res. 39: 8712-8727https://doi.org/10.1093/nar/gkr572Morikawa M. Derynck R. Miyazono K.

TGF-beta and the TGF-beta family: context-dependent roles in cell and tissue physiology.

Cold Spring Harb. Perspect. Biol. 8https://doi.org/10.1101/cshperspect.a021873

Stalk cell phenotype depends on integration of Notch and Smad1/5 signaling cascades.

Dev. Cell. 22: 501-514https://doi.org/10.1016/j.devcel.2012.01.007Murata T. Lin M.I. Huang Y. Yu J. Bauer P.M. Giordano F.J. Sessa W.C.

Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice.

J. Exp. Med. 204: 2373-2382https://doi.org/10.1084/jem.20062340

Endothelial Notch4 signaling induces hallmarks of brain arteriovenous malformations in mice.

Proc. Natl. Acad. Sci. U. S. A. 105: 10901-10906https://doi.org/10.1073/pnas.0802743105Murphy P.A. Lu G. Shiah S. Bollen A.W. Wang R.A.

Endothelial Notch signaling is upregulated in human brain arteriovenous malformations and a mouse model of the disease.

Lab. Investig. 89: 971-982https://doi.org/10.1038/labinvest.2009.62

Constitutively active Notch4 receptor elicits brain arteriovenous malformations through enlargement of capillary-like vessels.

Proc. Natl. Acad. Sci. U. S. A. 111: 18007-18012https://doi.org/10.1073/pnas.1415316111

留言 (0)

沒有登入
gif