Non-glucose modulators of insulin secretion in healthy humans: (dis)similarities between islet and in vivo studies

Henquin JC. Glucose-induced insulin secretion in isolated human islets: Does it truly reflect β-cell function in vivo? Mol Metab. 2021;48(6):101212.

Van Cauter E, Mestrez F, Sturis J, Polonsky KS. Estimation of insulin secretion rates from C-peptide levels. Comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes. 1992;41(3):368-77.

Teff KL, Grudziak J, Townsend RR, Dunn TN, Grant RW, Adams SH, et al. Endocrine and metabolic effects of consuming fructose- and glucose-sweetened beverages with meals in obese men and women: influence of insulin resistance on plasma triglyceride responses. J Clin Endocrinol Metab. 2009;94(5):1562-9.

Lawrence JR, Gray CE, Grant IS, Ford JA, McIntosh WB, Dunnigan MG. The insulin response to intravenous fructose in maturity-onset diabetes mellitus and in normal subjects. Diabetes. 1980;29(9):736-41.

Grant AM, Christie MR, Ashcroft SJ. Insulin release from human pancreatic islets in vitro. Diabetologia. 1980;19(2):114-7.

Kyriazis GA, Soundarapandian MM, Tyrberg B. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. Proc Natl Acad Sci U S A. 2012;109(8):E524-32.

Henquin JC, Dufrane D, Nenquin M. Nutrient control of insulin secretion in isolated normal human islets. Diabetes. 2006;55(12):3470-7.

Karam JH, Grasso SG, Wegienka LC, Grodsky GM, Forsham PH. Effect of selected hexoses, of epinephrine and of glucagon on insulin secretion in man. Diabetes. 1966;15(8):571-8.

Ganda OP, Soeldner JS, Gleason RE, Cleator IG, Reynolds C. Metabolic effects of glucose, mannose, galactose, and fructose in man. J Clin Endocrinol Metab. 1979;49(4):616-22.

Gudat U, Convent G, Heinemann L. Metformin and exercise: no additive effect on blood lactate levels in health volunteers. Diabet Med. 1997;14(2):138-42.

Rasmussen P, Plomgaard P, Krogh-Madsen R, Kim YS, van Lieshout JJ, Secher NH, et al. MCA Vmean and the arterial lactate-to-pyruvate ratio correlate during rhythmic handgrip. J Appl Physiol. 2006;101(5):1406-11.

Schmid SM, Jauch-Chara K, Hallschmid M, Oltmanns KM, Peters A, Born J, et al. Lactate overrides central nervous but not β-cell glucose sensing in humans. Metabolism. 2008;57(12):1733-9.

Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, et al. Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes. 2003;52(1):199-204.

Chowdhury A, Dyachok O, Tengholm A, Sandler S, Bergsten P. Functional differences between aggregated and dispersed insulin-producing cells. Diabetologia. 2013;56(7):1557-68.

van Loon LJ, Saris WH, Verhagen H, Wagenmakers AJ. Plasma insulin responses after ingestion of different amino acid or protein mixtures with carbohydrate. Am J Clin Nutr. 2000;72(1):96-105.

Schmidt JA, Rinaldi S, Scalbert A, Ferrari P, Achaintre D, Gunter MJ, et al. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: a cross-sectional analysis in the EPIC-Oxford cohort. Eur J Clin Nutr. 2016;70(3):306-12.

Floyd JC Jr, Fajans SS, Conn JW, Knopf RF, Rull J. Stimulation of insulin secretion by amino acids. J Clin Invest. 1966;45(9):1487-502.

Fajans SS, Floyd JC Jr, Knopf RF, Conn FW. Effect of amino acids and proteins on insulin secretion in man. Recent Prog Horm Res. 1967;23:617-62.

Li C, Ackermann AM, Boodhansingh KE, Bhatti TR, Liu C, Schug J, et al. Functional and metabolomic consequences of ATP-dependent potassium channel inactivation in human islets. Diabetes. 2017;66(7):1901-13.

Davalli AM, Ricordi C, Socci C, Braghi S, Bertuzzi F, Fattor B, et al. Abnormal sensitivity to glucose of human islets cultured in a high glucose medium: partial reversibility after an additional culture in a normal glucose medium. J Clin Endocrinol Metab. 1991;72(1):202-8.

Bertuzzi F, Berra C, Socci C, Davalli AM, Pozza G, Pontiroli AE. Insulin and glucagon release of human islets in vitro: effects of chronic exposure to glucagon. J Endocrinol. 1997;152(2):239-43.

Del Guerra S, Lupi R, Marselli L, Masini M, Bugliani M, Sbrana S, et al. Functional and molecular defects of pancreatic islets in human type 2 diabetes. Diabetes. 2005;54(3):727-35.

Henquin JC, Dufrane D, Kerr-Conte J, Nenquin M. Dynamics of glucose-induced insulin secretion in normal human islets. Am J Physiol Endocrinol Metab. 2015;309(7):E640-50.

Bode-Böger SM, Böger RH, Galland A, Tsikas D, Frölich JC. L-arginine-induced vasodilation in healthy humans: pharmacokinetic-pharmacodynamic relationship. Br J Clin Pharmacol. 1998;46(5):489-97.

Pfeifer MA, Halter JB, Graf R, Porte D Jr. Potentiation of insulin secretion to nonglucose stimuli in normal man by tolbutamide. Diabetes. 1980;29(5):335-40.

Ward WK, Bolgiano DC, McKnight B, Halter JB, Porte D Jr. Diminished B cell secretory capacity in patients with noninsulin-dependent diabetes mellitus. J Clin Invest. 1984;74:1318-28.

Nair KS, Matthews DE, Welle SL, Braiman T. Effect of leucine on amino acid and glucose metabolism in humans. Metabolism. 1992;41(6):643-8.

Kelly A, Ng D, Ferry RJ Jr, Grimberg A, Koo-McCoy S, Thornton PS, et al. Acute insulin responses to leucine in children with the hyperinsulinism/hyperammonemia syndrome. J Clin Endocrinol Metab. 2001;86(8):3724-8.

Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, et al. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight. 2019;4:e126742.

Müller WA, Aoki TT, Cahill GF Jr. Effect of alanine and glycine on glucagon secretion in postabsorptive and fasting obese man. J Clin Endocrinol Metab. 1975;40(3):418-25.

Porcellati F, Pampanelli S, Rossetti P, Busciantella Ricci N, Marzotti S, Lucidi P, et al. Effect of the amino acid alanine on glucagon secretion in non-diabetic and type 1 diabetic subjects during hyperinsulinaemic euglycaemia, hypoglycaemia and post-hypoglycaemic hyperglycaemia. Diabetologia. 2007;50(2):422-30.

Asano T, Ninomiya H, Kan K, Yamamoto T, Okumura M. Plasma glucagon response to intravenous alanine in obese and non-obese subjects. Endocrinol Jpn. 1989;36(5):767-73.

Arner P, Rydén M. Fatty acids, obesity and insulin resistance. Obes Facts. 2015;8(2):147-55.

Gravena C, Mathias PC, Ashcroft SJ. Acute effects of fatty acids on insulin secretion from rat and human islets of Langerhans. J Endocrinol. 2002;173(1):73-80.

Kristinsson H, Smith DM, Bergsten P, Sargsyan E. FFAR1 is involved in both the acute and chronic effects of palmitate on insulin secretion. Endocrinology. 2013;154(11):4078-88.

Cen J, Sargsyan E, Bergsten P. Fatty acids stimulate insulin secretion from human pancreatic islets at fasting glucose concentrations via mitochondria-dependent and -independent mechanisms. Nutr Metab (Lond). 2016;13(1):59.

Lorza-Gil E, Gerst F, Oquendo MB, Deschl U, Häring HU, Beilmann M, et al. Glucose, adrenaline and palmitate antagonistically regulate insulin and glucagon secretion in human pseudoislets. Sci Rep. 2019;9(1):10261.

Tunaru S, Bonnavion R, Brandenburger I, Preussner J, Thomas D, Scholich K, et al. 20-HETE promotes glucose-stimulated insulin secretion in an autocrine manner through FFAR1. Nat Commun. 2018; 9(1):177.

Yashiro H, Tsujihata Y, Takeuchi K, Hazama M, Johnson PR, Rorsman P. The effects of TAK-875, a selective G protein-coupled receptor 40/free fatty acid 1 agonist, on insulin and glucagon secretion in isolated rat and human islets. J Pharmacol Exp Ther. 2012;340(2):483-9.

Rorsman P, Ashcroft FM. Pancreatic β-cell electrical activity and insulin secretion: Of mice and men. Physiol Rev. 2018;98(1):117-214.

Carpentier A, Mittelman SD, Lamarche B, Bergman RN, Giacca A, Lewis GF. Acute enhancement of insulin secretion by FFA in humans is lost with prolonged FFA elevation. Am J Physiol. 1999;276(6):E1055-66.

Frias JP, Basabe L, Macaraeg G, Kruszynska YT. Lack of effect of a physiological elevation of plasma non-esterified fatty acid levels on insulin secretion. Diabetes Metab. 2000;26(2):133-9.

Stefan N, Fritsche A, Häring H, Stumvoll M. Effect of experimental elevation of free fatty acids on insulin secretion and insulin sensitivity in healthy carriers of the Pro12Ala polymorphism of the peroxisome proliferator--activated receptor-gamma2 gene. Diabetes. 2001;50:1143-8.

Paolisso G, Gambardella A, Amato L, Tortoriello R, D'Amore A, Varricchio M, et al. Opposite effects of short- and long-term fatty acid infusion on insulin secretion in healthy subjects. Diabetologia. 1995;38(11):1295-9.

Vamvini MT, Hamnvik OP, Sahin-Efe A, Gavrieli A, Dincer F, Farr OM, et al. Differential effects of oral and intravenous lipid administration on key molecules related to energy homeostasis. J Clin Endocrinol Metab. 2016;101(5):1989-97.

Chalkley SM, Kraegen EW, Furler SM, Campbell LV, Chisholm DJ. NEFA elevation during a hyperglycaemic clamp enhances insulin secretion. Diabet Med. 1998;15(4):327-33.

Layden BT, Angueira AR, Brodsky M, Durai V, Lowe WL Jr. Short chain fatty acids and their receptors: new metabolic targets. Transl Res. 2013;161(3):131-40.

Müller M, Hernández MAG, Goossens GH, Reijnders D, Holst JJ, Jocken JWE, et al. Circulating but not faecal short-chain fatty acids are related to insulin sensitivity, lipolysis and GLP-1 concentrations in humans. Sci Rep. 2019;9(1):12515.

Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther. 2013;139(3):359-91.

Priyadarshini M, Villa SR, Fuller M, Wicksteed B, Mackay CR, Alquier T, et al. An acetate-specific GPCR, FFAR2, regulates insulin secretion. Mol Endocrinol. 2015;29(7):1055-66.

Petersen KF, Impellizeri A, Cline GW, Shulman GI. The effects of increased acetate turnover on glucose-induced insulin secretion in lean and obese humans. J Clin Transl Sci. 2019;3(1):18-20.

Tang C, Ahmed K, Gille A, Lu S, Gröne HJ, Tunaru S, et al. Loss of FFA2 and FFA3 increases insulin secretion and improves glucose tolerance in type 2 diabetes. Nat Med. 2015;21(2):173-7.

McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, et al. GPR43 potentiates β-cell function in obesity. Diabetes. 2015;64(9):3203-17.

Pingitore A, Gonzalez-Abuin N, Ruz-Maldonado I, Huang GC, Frost G, Persaud SJ. Short chain fatty acids stimulate insulin secretion and reduce apoptosis in mouse and human islets in vitro: Role of free fatty acid receptor 2. Diabetes Obes Metab. 2019;21(2):330-9.

Pingitore A, Chambers ES, Hill T, Maldonado IR, Liu B, Bewick G, et al. The diet-derived short chain fatty acid propionate improves beta-cell function in humans and stimulates insulin secretion from human islets in vitro. Diabetes Obes Metab. 2017;19(2):257-65.

Bolognini D, Dedeo D, Milligan G. Metabolic and inflammatory functions of short-chain fatty acid receptors. Curr Opin Endocr Metab Res. 2021;16:1-9.

Laffel L. Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev. 1999;15(6):412-26.

Balasse EO, Ooms HA, Lambilliotte JP. Evidence for a stimulatory effect of ketone bodies on insulin secretion in man. Horm Metab Res. 1970;2(6):371-2.

Owen OE, Reichard GA Jr, Markus H, Boden G, Mozzoli MA, Shuman CR. Rapid intravenous sodium acetoacetate infusion in man: Metabolic and kinetic responses. J Clin Invest. 1973;52(10):2606-16.

[60]Balasse E, Ooms HA. Changes in the concentrations of glucose, free fatty acids, insulin and ketone bodies in the blood during sodium beta-hydroxybutyrate infusions in man. Diabetologia. 1968;4(3):133-5.

Sherwin RS, Hendler RG, Felig P. Effect of ketone infusions on amino acid and nitrogen metabolism in man. J Clin Invest. 1975;55(6):1382-90.

Miles JM, Haymond MW, Gerich JE. Suppression of glucose production and stimulation of insulin secretion by physiological concentrations of ketone bodies in man. J Clin Endocrinol Metab. 1981;52(1):34-7.

MacDonald MJ, Longacre MJ, Stoker SW, Kendrick M, Thonpho A, Brown LJ, et al. Differences between human and rodent pancreatic islets: low pyruvate carboxylase, atp citrate lyase, and pyruvate carboxylation and high glucose-stimulated acetoacetate in human pancreatic islets. J Biol Chem. 2011;286(21):18383-96.

Rhodes CJ, Campbell IL, Szopa TM, Biden TJ, Reynolds PD, Fernando ON, et al. Effects of glucose and D-3-hydroxybutyrate on human pancreatic islet cell function. Clin Sci (Lond). 1985;68(5):567-72.

Woods SC, Porte D Jr. Neural control of the endocrine pancreas. Physiol Rev. 1974; 54(3):596-619.

Ahrén B. Autonomic regulation of islet hormone secretion--implications for health and disease. Diabetologia. 2000;43(4):393-410.

Gilon P, Henquin JC. Mechanisms and physiological significance of the cholinergic control of pancreatic beta-cell function. Endocr Rev. 2001;22(5):565-604.

Thorens B. Neural regulation of pancreatic islet cell mass and function. Diabetes Obes Metab. 2014;16 (Suppl 1):87-95.

Faber CL, Deem JD, Campos CA, Taborsky GJ, Morton GJ. CNS control of the endocrine pancreas. Diabetologia. 2020;63(10):2086-94.

Rodriguez-Diaz R, Dando R, Jacques-Silva MC, Fachado A, Molina J, Abdulreda MH, et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat Med. 2011a;17(7):888-92.

Rodriguez-Diaz R, Abdulreda MH, Formoso AL, Gans I, Ricordi C, et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 2011b;14(1):45-54.

Tang SC, Baeyens L, Shen CN, Peng SJ, Chien HJ, Scheel DW, et al. Human pancreatic neuro-insular network in health and fatty infiltration. Diabetologia. 2018;61(1):168-81.

Henderson JR, Jefferys DB, Jones RH, Stanley D. The effect of atropine on the insulin release caused by oral and intravenous glucose in human subjects. Acta Endocrinol. 1976;83(4):772-80.

Veedfald S, Plamboeck A, Deacon CF, Hartmann B, Knop FK, Vilsbøll T, et al. Cephalic phase secretion of insulin and other enteropancreatic hormones in humans. Am J Physiol Gastrointest Liver Physiol. 2016;310(1):G43-51.

Wang S, Oestricker LZ, Wallendorf MJ, Sterl K, Dunai J, Kilpatrick CR, et al. Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance. PLoS One. 2018;13:e0192441.

Atiya A, Cohen G, Ignarro L, Brunicardi FC. Nitric oxide regulates insulin secretion in the isolated perfused human pancreas via a cholinergic mechanism. Surgery. 1996;120(2):322-7.

Molina J, Rodriguez-Diaz R, Fachado A, Jacques-Silva MC, Berggren PO, Caicedo A. Control of insulin secretion by cholinergic signaling in the human pancreatic islet. Diabetes. 2014;63(8):2714-26.

Doliba NM, Liu Q, Li C, Chen P, Liu C, Naji A, et al. Inhibition of cholinergic potentiation of insulin secretion from pancreatic islets by chronic elevation of glucose and fatty acids: Protection by casein kinase 2 inhibitor. Mol Metab. 2017;6(10):1240-53.

Zhu L, Rossi M, Cohen A, Pham J, Zheng H, Dattaroy D, et al. Allosteric modulation of β-cell M3 muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proc Natl Acad Sci U S A. 2019;116(37):18684-90.

Rojas E, Carroll PB, Ricordi C, Boschero AC, Stojilkovic SS, Atwater I. Control of cytosolic free calcium in cultured human pancreatic beta-cells occurs by external calcium-dependent and independent mechanisms. Endocrinology. 1994;134(4):1771-81.

Ganic E, Singh T, Luan C, Fadista J, Johansson JK, Cyphert HA, et al. MafA-controlled nicotinic receptor expression is essential for insulin secretion and is impaired in patients with Type 2 diabetes. Cell Rep. 2016;14(8):1991-2002.

Yoshikawa H, Hellström-Lindahl E, Grill V. Evidence for functional nicotinic receptors on pancreatic β-cells. Metabolism. 2005;54(2):247-54.

Winzell MS, Ahrén B. Role of VIP and PACAP in islet function. Peptides. 2007;28(9):1805-13.

Filipsson K, Tornøe K, Holst J, Ahrén B. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab. 1997;82(9):3093-8.

Tsutsumi M, Claus TH, Liang Y, Li Y, Yang L, Zhu J, et al. A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. Diabetes. 2002;51(5):1453-60.

Henquin JC. Paracrine and autocrine control of insulin secretion in human islets: evidence and pending questions. Am J Physiol Endocrinol Metab. 2021;320(1):E78-86.

Brunicardi FC, Druck P, Seymour NE, Sun YS, Elahi D, Andersen DK. Selective neurohormonal interactions in islet cell secretion in the isolated perfused human pancreas. J Surg Res. 1990;48(4):273-8.

Brunicardi FC, Sun YS, Druck P, Goulet RJ, Elahi D, Andersen DK. Splanchnic neural regulation of insulin and glucagon secretion in the isolated perfused human pancreas. Am J Surg. 1987;153(1):34-40.

Stich V, de Glisezinski I, Crampes F, Suljkovicova H, Galitzky J, Riviere D, et al. Activation of antilipolytic alpha2-adrenergic receptors by epinephrine during exercise in human adipose tissue. Am J Physiol. 1999;277(4):R1076-83.

Porte D Jr, Graber AL, Kuzuya T, Williams RH. The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest. 1966;45(2):228-36.

Porte D Jr. A receptor mechanism for the inhibition of insulin release by epinephrine in man. J Clin Invest. 1967a;46(1):86-94.

Porte D Jr. Beta adrenergic stimulation of insulin release in man. Diabetes. 1967b;16(3):150-5.

Morrow LA, Morganroth GS, Herman WH, Bergman RN, Halter JB. Effects of epinephrine on insulin secretion and action in humans. Interaction with aging. Diabetes. 1993;42(2):307-15.

Järhult J, Holst J. The role of the adrenergic innervation to the pancreatic islets in the control of insulin release during exercise in man. Pfluegers Arch. 1979;383(1):41-5.

Lacey RJ, Cable HC, James RF, London NJ, Scarpello JH, Morgan NG. Concentration-dependent effects of adrenaline on the profile of insulin secretion from isolated human islets of Langerhans. J Endocrinol. 1993;138(3):555-63.

Lacey RJ, Chan SL, Cable HC, James RF, Perrett CW, Scarpello JH, et al. Expression of alpha 2- and beta-adrenoceptor subtypes in human islets of Langerhans. J Endocrinol. 1996;148(3):531-43.

Straub SG, James RF, Dunne MJ, Sharp GW. Glucose activates both KATP channel-dependent and KATP channel-independent signaling pathways in human islets. Diabetes. 1998; 47(5)758-63.

Kumar R, Balhuizen A, Amisten S, Lundquist I, Salehi A. Insulinotropic and antidiabetic effects of 17β-estradiol and the GPR30 agonist G-1 on human pancreatic islets. Endocrinology. 2011;152(7):2568-79.

Amisten S, Atanes P, Hawkes R, Ruz-Maldonado I, Liu B, Parandeh F, et al. A comparative analysis of human and mouse islet G-protein coupled receptor expression. Sci Rep. 2017;7:46600.

Lacey RJ, Berrow NS, London NJ, Lake SP, James RF, Scarpello JH, et al. Differential effects of beta-adrenergic agonists on insulin secretion from pancreatic islets isolated from rat and man. J Mol Endocrinol. 1990;5(1):49-54.

Gilbey SG, Stephenson J, O'Halloran DJ, Burrin JM, Bloom SR. High-dose porcine galanin infusion and effect on intravenous glucose tolerance in humans. Diabetes. 1989;38(9):1114-6.

Ahrén B, Ar'Rajab A, Böttcher G, Sundler F, Dunning BE. Presence of galanin in human pancreatic nerves and inhibition of insulin secretion from isolated human islets. Cell Tissue Res. 1991;264(2):263-7.

Loh K, Shi YC, Walters S, Bensellam M, Lee K, Dezaki K, et al. Inhibition of Y1 receptor signaling improves islet transplant outcome. Nat Commun. 2017;8(1):490.

Bennet WM, Wang ZL, Jones PM, Wang RM, James RF, London NJ, et al. Presence of neuropeptide Y and its messenger ribonucleic acid in human islets: evidence for a possible paracrine role. J Clin Endocrinol Metab. 1996;81(6):2117-20.

Rodnoi P, Rajkumar M, Moin ASM, Georgia SK, Butler AE, Dhawan S. Neuropeptide Y expression marks partially differentiated β cells in mice and humans. JCI Insight. 2017;2(12):e94005.

Ahrén B, Larsson H. Peptide YY does not inhibit glucose-stimulated insulin secretion in humans. Eur J Endocrinol. 1996;134(3):362-5.

Sloth B, Holst JJ, Flint A, Gregersen NT, Astrup A. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am J Physiol Endocrinol Metab. 2007;292(4):E1062-8.

Guida C, McCulloch LJ, Godazgar M, Stephen SD, Baker C, Basco D, et al. Sitagliptin and Roux-en-Y gastric bypass modulate insulin secretion via regulation of intra-islet PYY. Diabetes Obes Metab. 2018;20(3):571-81.

Rhodes CJ, White MF, Leahy JL, Kahn SE. Direct autocrine action of insulin on β-cells: does it make physiological sense? Diabetes. 2013;62(7):2157-63.

DeFronzo RA, Binder C, Wahren J, Felig P, Ferrannini E, Faber OK. Sensitivity of insulin secretion to feedback inhibition by hyperinsulinaemia. Acta Endocrinol (Copenh). 1981;98(1):81-6.

Elahi D, Nagulesparan M, Hershcopf RJ, Muller DC, Tobin JD, Blix PM, et al. Feedback inhibition of insulin secretion by insulin: relation to the hyperinsulinemia of obesity. N Engl J Med. 1982;306(20):1196-202.

Boden G, Chen X, DeSantis R, Kolaczynski J, Morris M. Evidence that suppression of insulin secretion by insulin itself is neurally mediated. Metabolism. 1993;42(6):786-9.

Bouche C, Lopez X, Fleischman A, Cypess AM, O'Shea S, Stefanovski D, et al. Insulin enhances glucose-stimulated insulin secretion in healthy humans. Proc Natl Acad Sci U S A. 2010;107(10):4770-5.

Anderwald C, Tura A, Grassi A, Krebs M, Szendroedi J, Roden M, et al. Insulin infusion during normoglycemia modulates insulin secretion according to whole-body insulin sensitivity. Diabetes Care. 2011;34(2):437-41.

Mari A, Tura A, Natali A, Anderwald C, Balkau B, Lalic N, et al. Influence of hyperinsulinemia and insulin resistance on in vivo β-cell function: their role in human β-cell dysfunction. Diabetes. 2011;60(12):3141-7.

Song SH, McIntyre SS, Shah H, Veldhuis JD, Hayes PC, Butler PC. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J Clin Endocrinol Metab. 2000;85(12):4491-9.

Kleinman R, Ohning G, Wong H, Watt P, Walsh J, Brunicardi FC. Regulatory role of intraislet somatostatin on insulin secretion in the isolated perfused human pancreas. Pancreas. 1994;9(2):172-8.

Luciani DS, Johnson JD. Acute effects of insulin on beta-cells from transplantable human islets. Mol Cell Endocrinol. 2005;241:88-98.

Persaud SJ, Muller D, Jones PM. Insulin signalling in islets. Biochem Soc Trans. 2008;36(3):290-3.

Braun M, Ramracheya R, Rorsman P. Autocrine regulation of insulin secretion. Diabetes Obes Metab. 2012;14(Suppl 3):143-51.

Nielsen JH. Growth and function of the pancreatic beta cell in vitro: effects of glucose, hormones and serum factors on mouse, rat and human pancreatic islets in organ culture. Acta Endocrinol Suppl (Copenh). 1985;266:1-39.

Marchetti P, Scharp DW, McLear M, Finke EH, Olack B, Swanson C, et al. Insulin inhibits its own secretion from isolated, perifused human pancreatic islets. Acta Diabetol. 1995;32(2):75-7.

Wojcikowski C, Blackman J, Ostrega D, Lewis G, Galloway J, Rubenstein AH, et al. Lack of effect of high-dose biosynthetic human C-peptide on pancreatic hormone release in normal subjects. Metabolism 1990;39(8):827-32.

Bugliani M, Torri S, Lupi R, Del Guerra S, Grupillo M, Del Chiaro M, et al. Effects of C-peptide on isolated human pancreatic islet cells. Diabetes Metab Res Rev. 2007;23(3):215-9.

Gutniak M, Grill V, Wiechel KL, Efendic S. Basal and meal-induced somatostatin-like immunoreactivity in healthy subjects and in IDDM and totally pancreatectomized patients. Effects of acute blood glucose normalization. Diabetes. 1987;36(7):802-7.

Loud FB, Holst JJ, Egense E, Petersen B, Christiansen J. Is somatostatin a humoral regulator of the endocrine pancreas and gastric acid secretion in man? Gut 1985;26(5):445-9.

D'Alessio DA, Sieber C, Beglinger C, Ensinck JW. A physiologic role for somatostatin 28 as a regulator of insulin secretion. J Clin Invest. 1989;84(3):857-62.

Zambre Y, Ling Z, Chen MC, Hou X, Woon CW, Culler M, et al. Inhibition of human pancreatic islet insulin release by receptor-selective somatostatin analogs directed to somatostatin receptor subtype 5. Biochem Pharmacol. 1999;57(10):1159-64.

Singh V, Brendel MD, Zacharias S, Mergler S, Jahr H, Wiedenmann B, et al. Characterization of somatostatin receptor subtype-specific regulation of insulin and glucagon secretion: an in vitro study on isolated human pancreatic islets. J Clin Endocrinol Metab. 2007;92(2):673-80.

Moldovan S, Atiya A, Adrian TE, Kleinman RM, Lloyd K, Olthoff K, et al. Somatostatin inhibits B-cell secretion via a subtype-2 somatostatin receptor in the isolated perfused human pancreas. J Surg Res. 1995;59(1):85-90 .

Brunicardi FC, Atiya A, Moldovan S, Lee TC, Fagan SP, Kleinman RM, et al. Activation of somatostatin receptor subtype 2 inhibits insulin secretion in the isolated perfused human pancreas. Pancreas 2003;27(4):e84-9.

Farb TB, Adeva M, Beauchamp TJ, Cabrera O, Coates DA, Meredith TD, et al. Regulation of endogenous (Male) rodent GLP-1 secretion and human islet insulin secretion by antagonism of Somatostatin receptor 5. Endocrinology. 2017;158(11):3859-73.

Samols E, Marri G, Marks V. Interrelationship of glucagon, insulin and glucose. The insulinogenic effect of glucagon. Diabetes. 1966;15(12):855-66.

Robertson RP, Raymond RH, Lee DS, Calle RA, Ghosh A, Savage PJ, et al. Arginine is preferred to glucagon for stimulation testing of β-cell function. Am J Physiol Endocrinol Metab. 2014;307(8):E720-7.

Mühlhauser I, Koch J, Berger M. Pharmacokinetics and bioavailability of injected glucagon: differences between intramuscular, subcutaneous, and intravenous administration. Diabetes Care. 1985;8(1):39-42.

Holst JJ, Madsen OG, Knop J, Schmidt A. The effect of intraportal and peripheral infusions of glucagon on insulin and glucose concentrations and glucose tolerance in normal man. Diabetologia. 1977;13(5):487-90.

Espinosa de los Monteros A, Driscoll SG, Steinke J. Insulin release from isolated human fetal pancreatic islets. Science. 1970;168:1111-2.

Huypens P, Ling Z, Pipeleers D, Schuit F. Glucagon receptors on human islet cells contribute to glucose competence of insulin release. Diabetologia. 2000;43(8):1012-9.

Marchetti P, Lupi R, Bugliani M, Kirkpatrick CL, Sebastiani G, Grieco FA, et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia. 2012;55(12):3262-72.

Omar BA, Liehua L, Yamada Y, Seino Y, Marchetti P, Ahrén B. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia. 2014;57(9):1876-83.

Campbell SA, Golec DP, Hubert M, Johnson J, Salamon N, Barr A, et al. Human islets contain a subpopulation of glucagon-like peptide-1 secreting α-cells that is increased in type 2 diabetes. Mol Metab. 2020;39:101014.

Salehi M, Aulinger B, Prigeon RL, D'Alessio DA. Effect of endogenous GLP-1 on insulin secretion in type-2 diabetes. Diabetes. 2010;59(6):1330-7.

Perley MJ, Kipnis DM. Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. J Clin Invest. 1967;46(12):1954-62.

Ferrannini E, Mari A. β-Cell function in type 2 diabetes. Metabolism. 2014a;63(10):1217-27.

Nauck MA, Meier JJ. Incretin hormones: Their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5-21.

Müller TD, Finan B, Bloom SR, D'Alessio D, Drucker DJ, Flatt PR, et al. Glucagon-like peptide 1 (GLP-1). Mol Metab. 2019;30:72-130.

Schirra J, Sturm K, Leicht P, Arnold R, Göke B, Katschinski M. Exendin(9-39)amide is an antagonist of glucagon-like peptide-1(7-36)amide in humans. J Clin Invest. 1998;101(7):1421-30.

Fehmann HC, Hering BJ, Wolf MJ, Brandhorst H, Brandhorst D, Bretzel RG, et al. The effects of glucagon-like peptide-I (GLP-I) on hormone secretion from isolated human pancreatic islets. Pancreas. 1995;11(2):196-200.

Lupi R, Del Guerra S, D'Aleo V, Boggi U, Filipponi F, Marchetti P. The direct effects of GLP-1 and GIP, alone or in combination, on human pancreatic islets. Regul Pept. 2010;165(2-3):129-132.

Ramracheya R, Chapman C, Chibalina M, Dou H, Miranda C, González A, et al. GLP-1 suppresses glucagon secretion in human pancreatic alpha-cells by inhibition of P/Q-type Ca2+ channels. Physiol Rep. 2018;6(17):e13852.

Edwards CM, Todd JF, Mahmoudi M, Wang Z, Wang RM, Ghatei MA, et al. Glucagon-like peptide 1 has a physiological role in the control of postprandial glucose in humans: studies with the antagonist exendin 9-39. Diabetes. 1999;48(1):86-93.

Edlund A, Esguerra JL, Wendt A, Flodström-Tullberg M, Eliasson L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta-cells. BMC Med. 2014;12:87.

Hodson DJ, Mitchell RK, Marselli L, Pullen TJ, Gimeno Brias S, Semplici F, et al. ADCY5 couples glucose to insulin secretion in human islets. Diabetes. 2014;63(9):3009-21.

Xie L, Zhu D, Dolai S, Liang T, Qin T, Kang Y, et al. Syntaxin-4 mediates exocytosis of pre-docked and newcomer insulin granules underlying biphasic glucose-stimulated insulin secretion in human pancreatic beta cells. Diabetologia. 2015;58(6):1250-9.

Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, et al. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. J Clin Invest. 2015;125(12):4714-28.

Del Guerra S, Lupi R, Dotta F, Marselli L, Lencioni C, Santangelo C, et al. Effects of prolonged exposure to pancreatic glucagon on the function, antigenicity and survival of isolated human islets. Diabetes Metab Res Rev. 2000;16(4):281-6.

Ackeifi C, Wang P, Karakose E, Manning Fox JE, González BJ, Liu H, et al. GLP-1 receptor agonists synergize with DYRK1A inhibitors to potentiate functional human β cell regeneration. Sci Transl Med. 2020;12(530).

Gasbjerg LS, Christensen MB, Hartmann B, Lanng AR, Sparre-Ulrich AH, Gabe MBN, et al. GIP(3-30)NH2 is an efficacious GIP receptor antagonist in humans: a randomised, double-blinded, placebo-controlled, crossover study. Diabetologia. 2018;61(2):413-23.

Kolic J, Spigelman AF, Smith AM, Manning Fox JE, MacDonald PE. Insulin secretion induced by glucose-dependent insulinotropic polypeptide requires phosphatidylinositol 3-kinase γ in rodent and human β-cells. J Biol Chem. 2014;289(46):32109-20.

Timper K, Dalmas E, Dror E, Rütti S, Thienel C, Sauter NS, et al. Glucose-dependent insulinotropic peptide stimulates glucagon-like peptide 1 production by pancreatic islets via interleukin 6, produced by α-cells. Gastroenterology. 2016;151(1):165-79.

Lyssenko V, Eliasson L, Kotova O, Pilgaard K, Wierup N, Salehi A, et al. Pleiotropic effects of GIP on islet function involve osteopontin. Diabetes. 2011;60(9):2424-33.

Lee YH, Magkos F, Mantzoros CS, Kang ES. Effects of leptin and adiponectin on pancreatic β-cell function. Metabolism. 2011;60(12):1664-72.

Cantley J. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis. Mamm Genome. 2014;25:442-54.

Seufert J, Kieffer TJ, Leech CA, Holz GG, Moritz W, Ricordi C, et al. Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. J Clin Endocrinol Metab. 1999;84(2):670-6.

Kharroubi I, Rasschaert J, Eizirik DL, Cnop M. Expression of adiponectin receptors in pancreatic β- cells. Biochem Biophys Res Commun. 2003;312(4):1118-22.

Kulkarni RN, Wang ZL, Wang RM, Hurley JD, Smith DM, Ghatei MA, et al. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice. J Clin Invest. 1997;100(11):2729-36.

Kuehnen P, Laubner K, Raile K, Schöfl C, Jakob F, Pilz I, et al. Protein phosphatase 1 (PP-1)-dependent inhibition of insulin secretion by leptin in INS-1 pancreatic β-cells and human pancreatic islets. Endocrinology. 2011;152(5):1800-8.

Fehmann HC, Berghöfer P, Brandhorst D, Brandhorst H, Hering B, Bretzel RG, et al. Leptin inhibition of insulin secretion from isolated human islets. Acta Diabetol. 1997;34(4):249-52.

Lupi R, Marchetti P, Maffei M, Del Guerra S, Benzi L, Marselli L, et al. Effects of acute or prolonged exposure to human leptin on isolated human islet function. Biochem Biophys Res Commun. 1999;256(3):637-641.

Maedler K, Schulthess FT, Bielman C, Berney T, Bonny C, Prentki M, et al. Glucose and leptin induce apoptosis in human β-cells and impair glucose-stimulated insulin secretion through activation of c-Jun N-terminal kinases. FASEB J. 2008;22(6):1905-13.

Patané G, Caporarello N, Marchetti P, Parrino C, Sudano D, Marselli L, et al. Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation. Acta Diabetol. 2013;50(6):851-7.

Staiger K, Stefan N, Staiger H, Brendel MD, Brandhorst D, Bretzel RG, et al. Adiponectin is functionally active in human islets but does not affect insulin secretory function or β-cell lipoapoptosis. J Clin Endocrinol Metab. 2005;90(12):6707-13.

Lo JC, Ljubicic S, Leibiger B, Kern M, Leibiger IB, Moede T, et al. Adipsin is an adipokine that improves β cell function in diabetes. Cell. 2014 Jul 3;158(1):41-53.

Zhou Q, Ge Q, Ding Y, Qu H, Wei H, Wu R, et al. Relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig. 2018 Sep;9(5):1128-1134.

Rafacho A, Ortsäter H, Nadal A, Quesada I. Glucocorticoid treatment and endocrine pancreas function: implications for glucose homeostasis, insulin resistance and diabetes. J Endocrinol. 2014;223(3):R49-62.

van Raalte DH, Diamant M. Steroid diabetes: from mechanism to treatment? Neth J Med. 2014;72(2):62-72.

Esguerra JLS, Ofori JK, Nagao M, Shuto Y, Karagiannopoulos A, Fadista J, et al. Glucocorticoid induces human beta cell dysfunction by involving riborepressor GAS5 LincRNA. Mol Metab. 2020;32:160-7.

Lund T, Fosby B, Korsgren O, Scholz H, Foss A. Glucocorticoids reduce pro-inflammatory cytokines and tissue factor in vitro and improve function of transplanted human islets in vivo. Transpl Int. 2008;21(7):669-78.

Fabregat ME, Fernandez-Alvarez J, Franco C, Malaisse WJ, Gomis R. Dexamethasone-induced changes in FAD-glycerophosphate dehydrogenase mRNA, content and activity, and insulin release in human pancreatic islets. Diabetes Nutr Metab. 1999;12(6):388-93.

Fine NHF, Doig CL, Elhassan YS, Vierra NC, Marchetti P, Bugliani M, et al. Glucocorticoids reprogram β-cell signaling to preserve insulin secretion. Diabetes. 2018;67(2):278-90.

Dichtel LE, Schorr M, Loures de Assis C, Rao EM, Sims JK, Corey KE, et al. Plasma free cortisol in states of normal and altered binding globulins: Implications for adrenal insufficiency diagnosis. J Clin Endocrinol Metab. 2019;104(10):4827-36.

Grammatiki M, Rapti E, Karras S, Ajjan RA, Kotsa K. Vitamin D and diabetes mellitus: Causal or casual association? Rev Endocr Metab Disord. 2017;18(2):227-41.

Johnson JA, Grande JP, Roche PC, Kumar R. Immunohistochemical localization of the 1,25(OH)2D3 receptor and calbindin D28k in human and rat pancreas. Am J Physiol. 1994;267(3):E356-60.

Kjalarsdottir L, Tersey SA, Vishwanath M, Chuang JC, Posner BA, Mirmira RG, et al. 1,25-Dihydroxyvitamin D3 enhances glucose-stimulated insulin secretion in mouse and human islets: a role for transcriptional regulation of voltage-gated calcium channels by the vitamin D receptor. J Steroid Biochem Mol Biol. 2019;185:17-26.

Wolden-Kirk H, Rondas D, Bugliani M, Korf H, Van Lommel L, Brusgaard K, et al. Discovery of molecular pathways mediating 1,25-dihydroxyvitamin D3 protection against cytokine-induced inflammation and damage of human and male mouse islets of Langerhans. Endocrinology. 2014;155(3):736-747.

Basu A, Dube S, Basu R. Men are from Mars, women are from Venus: Sex differences in insulin action and secretion. Adv Exp Med Biol. 2017;1043:53-64.

Gannon M, Kulkarni RN, Tse HM, Mauvais-Jarvis F. Sex differences underlying pancreatic islet biology and its dysfunction. Mol Metab. 2018;15:82-91.

Soriano S, Alonso-Magdalena P, García-Arévalo M, Novials A, Muhammed SJ, Salehi A, et al. Rapid insulinotropic action of low doses of bisphenol-A on mouse and human islets of Langerhans: role of estrogen receptor β. PLoS One. 2012;7(2):e31109.

Handgraaf S, Dusaulcy R, Visentin F, Philippe J, Gosmain Y. 17-β Estradiol regulates proglucagon-derived peptide secretion in mouse and human α- and L cells. JCI Insight. 2018;3(7):e98569.

Navarro G, Allard C, Morford JJ, Xu W, Liu S, Molinas AJ, et al. Androgen excess in pancreatic β cells and neurons predisposes female mice to type 2 diabetes. JCI Insight. 2018;3(12)pii: 98607.

Navarro G, Xu W, Jacobson DA, Wicksteed B, Allard C, Zhang G, et al. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell Metab. 2016;23(5):837-51.

Al-Majed HT, Squires PE, Persaud SJ, Huang GC, Amiel S, Whitehouse BJ, et al. Effect of 17beta-estradiol on insulin secretion and cytosolic calcium in Min6 mouse insulinoma cells and human islets of Langerhans. Pancreas. 2005;30(4):307-13.

Doglioni C, Gambacorta M, Zamboni G, Coggi G, Viale G. Immunocytochemical localization of progesterone receptors in endocrine cells of the human pancreas. Am J Pathol. 1990;137(5):999-1005

Marrano N, Biondi G, Cignarelli A, Perrini S, Laviola L, Giorgino F, et al. Functional loss of pancreatic islets in type 2 diabetes: How can we halt it? Metabolism. 2020;110:154304.

Cosgrove KE, Straub SG, Barnes PD, Chapman J, Sharp GW, Dunne MJ. Y-26763: ATP-sensitive K+ channel activation and the inhibition of insulin release from human pancreatic beta-cells. Eur J Pharmacol. 2004;486(2):133-9.

Zhang F, Sjöholm A, Zhang Q. Pioglitazone acutely influences glucose-sensitive insulin secretion in normal and diabetic human islets. Biochem Biophys Res Commun. 2006;351(3):750-5.

MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PR, et al. A K-ATP channel-dependent pathway within alpha cells regulates glucagon release from both rodent and human islets of Langerhans. PLoS Biol. 2007;5(6):e143.

Henquin JC, Dufrane D, Gmyr V, Kerr-Conte J, Nenquin M. Pharmacological approach to understanding the control of insulin secretion in human islets. Diabetes Obes Metab. 2017;19(8):1061-70.

Lupi R, Marchetti P, Giannarelli R, Coppelli A, Tellini C, Del Guerra S, et al. Effects of glibenclamide and metformin (alone or in combination) on insulin release from isolated human pancreatic islets. Acta Diabetol. 1997;34(1):46-8.

Maedler K, Carr RD, Bosco D, Zuellig RA, Berney T, Donath MY. Sulfonylurea induced β-cell apoptosis in cultured human islets. J Clin Endocrinol Metab. 2005;90(1):501-6.

Prudente S, Morini E, Marselli L, Baratta R, Copetti M, Mendonca C, et al. Joint effect of insulin signaling genes on insulin secretion and glucose homeostasis. J Clin Endocrinol Metab. 2013;98(6):E1143-7.

Ma K, Xiao A, Park SH, Glenn L, Jackson L, Barot T, et al. 12-Lipoxygenase inhibitor improves functions of cytokine-treated human islets and Type 2 diabetic islets. J Clin Endocrinol Metab. 2017;102(8):2789-97.

Del Guerra S, Parentini C, Bracci C, Lupi R, Marselli L, Aragona M, et al. Insulin release form isolated, human islets after acute or prolonged exposure to glimepiride. Acta Diabetol. 2000;37(3):139-41.

Widström A, Cerasi E. On the action of tolbutamide in normal man. I. Role of adrenergic mechanisms in tolbutamide-induced insulin release during normoglycaemia and induced hypoglycaemia. Acta Endocrinol. 1973; 72:506-18.

Groop L, Luzi L, Melander A, Groop PH, Ratheiser K, Simonson DC, et al. Different effects of glyburide and glipizide on insulin secretion and hepatic glucose production in normal and NIDDM subjects. Diabetes. 1987;36(11):1320-8.

Perkins EJ, Posada M, Kellie Turner P, Chappell J, Ng WT, Twelves C. Physiologically based pharmacokinetic modelling of cytochrome P450 2C9-related tolbutamide drug interactions with sulfaphenazole and tasisulam. Eur J Drug Metab Pharmacokinet. 2018;43(3):355-67.

Pfeifer MA, Halter JB, Judzewitsch RG, Beard JC, Best JD, Ward WK, et al. Acute and chronic effects of sulfonylurea drugs on pancreatic islet function in man. Diabetes Care. 1984;7(Suppl 1):25-34.

Gjesing AP, Hornbak M, Allin KH, Ekstrøm CT, Urhammer SA, Eiberg H, et al. High heritability and genetic correlation of intravenous glucose- and tolbutamide-induced insulin secretion among non-diabetic family members of type 2 diabetic patients. Diabetologia 2014;57(6):1173-81.

Berchtold P, Büber V, Meier V, Felber JP, Keiser G. Vergleichende Untersuchungen über den oralen und intravenösen Tolbutamidtest. Diabetologia. 1971;7(2):77-81.

Groop LC, Barzilai N, Ratheiser K, Luzi L, Wåhlin-Boll E, Melander A, et al. Dose-dependent effects of glyburide on insulin secretion and glucose uptake in humans. Diabetes Care. 1991;14(8):724-7.

Koncz L, Soeldner JS, Otto H, Smith TM, Gleason RE. Insulin secretory dynamics after two consecutive intravenous stimulations with glucose and/or tolbutamide. Metabolism. 1979;28(12):1183-97.

Henquin JC. Misunderstandings and controversies about the insulin-secreting properties of antidiabetic sulfonylureas. Biochimie. 2017;143:3-9.

Scheen AJ. Clinical pharmacokinetics of metformin. Clin Pharmacokinet. 1996;30(5):359-71.

Bonora E, Cigolini M, Bosello O, Zancanaro C, Capretti L, Zavaroni I, et al. Lack of effect of intravenous metformin on plasma concentrations of glucose, insulin, C-peptide, glucagon and growth hormone in non-diabetic subjects. Curr Med Res Opin. 1984;9(1):47-51.

Sum CF, Webster JM, Johnson AB, Catalano C, Cooper BG, Taylor R. The effect of intravenous metformin on glucose metabolism during hyperglycaemia in type 2 diabetes. Diabet Med. 1992;9(1):61-5.

Rasouli N, Kern PA, Reece EA, Elbein SC. Effects of pioglitazone and metformin on β-cell function in nondiabetic subjects at high risk for type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(1):E359-65.

Marchetti P, Del Guerra S, Marselli L, Lupi R, Masini M, Pollera M, et al. Pancreatic islets from type 2 diabetic patients have functional defects and increased apoptosis that are ameliorated by metformin. J Clin Endocrinol Metab. 2004;89(11):5535-41.

Cen J, Sargsyan E, Forslund A, Bergsten P. Mechanisms of beneficial effects of metformin on fatty acid-treated human islets. J Mol Endocrinol. 2018;61(3):91-9.

Degn KB, Brock B, Juhl CB, Djurhuus CB, Grubert J, Kim D, et al. Effect of intravenous infusion of exenatide (synthetic exendin-4) on glucose-dependent insulin secretion and counterregulation during hypoglycemia. Diabetes. 2004;53(9):2397-403.

Cirincione B, Mager DE. Population pharmacokinetics of exenatide. Br J Clin Pharmacol. 2017;83(3):517-26.

Johnson JD, Ao Z, Ao P, Li H, Dai LJ, He Z, et al. Different effects of FK506, rapamycin, and mycophenolate mofetil on glucose-stimulated insulin release and apoptosis in human islets. Cell Transplant. 2009;18(8):833-45.

Ferdaoussi M, Smith N, Lin H, Bautista A, Spigelman AF, Lyon J, et al. Improved glucose tolerance with DPPIV inhibition requires β-cell SENP1 amplification of glucose-stimulated insulin secretion. Physiol Rep. 2020;8:e14420.

Lupi R, Mancarella R, Del Guerra S, Bugliani M, Del Prato S, Boggi U, et al. Effects of exendin-4 on islets from type 2 diabetes patients. Diabetes Obes Metab. 2008;10(6):515-9.

Park YJ, Ao Z, Kieffer TJ, Chen H, Safikhan N, Thompson DM, et al. The glucagon-like peptide-1 receptor agonist exenatide restores impaired pro-islet amyloid polypeptide processing in cultured human islets: implications in type 2 diabetes and islet transplantation. Diabetologia. 2013;56(3):508-19.

Chowdhury AI, Bergsten P. GLP-1 analogue recovers impaired insulin secretion from human islets treated with palmitate via down-regulation of SOCS2. Mol Cell Endocrinol. 2017;439:194-202.

Toso C, McCall M, Emamaullee J, Merani S, Davis J, Edgar R, et al. Liraglutide, a long-acting human glucagon-like peptide 1 analogue, improves human islet survival in culture. Transpl Int. 2010;23(3):259-65.

Saponaro C, Gmyr V, Thévenet J, Moerman E, Delalleau N, Pasquetti G, et al. The GLP1R agonist Liraglutide reduces hyperglucagonemia induced by the SGLT2 inhibitor Dapagliflozin via somatostatin release. Cell Rep. 2019;28(6):1447-54.

Dai C, Walker JT, Shostak A, Bouchi Y, Poffenberger G, Hart NJ, et al. Dapagliflozin does not directly affect human α or β cells. Endocrinology. 2020;161(8):bqaa080.

Chae H, Augustin R, Gatineau E, Mayoux E, Bensellam M, Antoine N, et al. SGLT2 is not expressed in pancreatic α- and β-cells, and its inhibition does not directly affect glucagon and insulin secretion in rodents and humans. Mol Metab. 2020;42:101071.

Ferrannini E, Muscelli E, Frascerra S, Baldi S, Mari A, Heise T, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014b;124(2):499-508.

Al Jobori H, Daniele G, Adams J, Cersosimo E, Solis-Herrera C, Triplitt C, et al. Empagliflozin treatment is associated with improved β-cell function in Type 2 Diabetes mellitus. J Clin Endocrinol Metab. 2018;103(4):1402-7.

Lupi R, Del Guerra S, Marselli L, Bugliani M, Boggi U, Mosca F, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPARγ2 in the modulation of insulin secretion. Am J Physiol Endocrinol Metab. 2004;286(4):E560-7.

Zeender E, Maedler K, Bosco D, Berney T, Donath MY, Halban PA. Pioglitazone and sodium salicylate protect human β-cells against apoptosis and impaired function induced by glucose and interleukin-1β. J Clin Endocrinol Metab. 2004;89(10):5059-66.

Vandewalle B, Moerman E, Lefebvre B, Defrance F, Gmyr V, Lukowiak B, et al. PPARgamma-dependent and -independent effects of rosiglitazone on lipotoxic human pancreatic islets. Biochem Biophys Res Commun. 2008;366(4):1096-101.

Lin CY, Gurlo T, Haataja L, Hsueh WA, Butler PC. Activation of peroxisome proliferator-activated receptor-gamma by rosiglitazone protects human islet cells against human islet amyloid polypeptide toxicity by a phosphatidylinositol 3'-kinase-dependent pathway. J Clin Endocrinol Metab. 2005;90(12):6678-86.

Hart NJ, Powers AC. Use of human islets to understand islet biology and diabetes: progress, challenges and suggestions. Diabetologia. 2019;62(2):212-22.

Henquin JC. The challenge of correctly reporting hormones content and secretion in isolated human islets. Mol Metab. 2019;30:230-9.

留言 (0)

沒有登入
gif