Leukoencephalopathy and conduction blocks in PLEKHG5-associated intermediate CMT disease

Laurá M Pipis M Rossor AM Reilly MM.

Charcot-marie-Tooth disease and related disorders: An evolving landscape.

Curr Opin Neurol. 2019; 32: 641-650https://doi.org/10.1097/WCO.0000000000000735View in Article Scopus (29) PubMed Crossref Google ScholarMurphy SM Laura M Fawcett K Pandraud A Liu Y-T Davidson GL et al.

Charcot-Marie-Tooth disease: frequency of genetic subtypes and guidelines for genetic testing.

J Neurol Neurosurg Psychiatry. 2012; 83: 706-710https://doi.org/10.1136/jnnp-2012-302451View in Article Scopus (226) PubMed Crossref Google ScholarMaystadt I Rezsöhazy R Barkats M Duque S Vannuffel P Remacle S et al.

The nuclear factor κB-activator gene PLEKHG5 is mutated in a form of autosomal recessive lower motor neuron disease with childhood onset.

Am J Hum Genet. 2007; 81: 67-76https://doi.org/10.1086/518900View in Article Scopus (64) PubMed Abstract Full Text Full Text PDF Google ScholarAzzedine H Zavadakova P Planté-Bordeneuve V Pato MV Pinto N Bartesaghi L et al.

pLEKHG5 deficiency leads to an intermediate form of autosomal-recessive charcot-marie-tooth disease.

Hum Mol Genet. 2013; 22: 4224-4232https://doi.org/10.1093/hmg/ddt274View in Article Scopus (23) PubMed Crossref Google ScholarKim HJ Bin Hong Y Park JM Choi YR Kim YJ Yoon BR et al.

Mutations in the PLEKHG5 gene is relevant with autosomal recessive intermediate Charcot-Marie-Tooth disease.

Orphanet J Rare Dis. 2013; 8https://doi.org/10.1186/1750-1172-8-104View in Article Scopus (20) Crossref Google ScholarChen Z Maroofian R Başak AN Shingavi L Karakaya M Efthymiou S et al.

Novel variants broaden the phenotypic spectrum of PLEKHG5- associated neuropathies.

Eur J Neurol. 2020; (ene.14649)https://doi.org/10.1111/ene.14649View in Article Scopus (1) Crossref Google ScholarGonzalez-Quereda L Pagola I Fuentes Prior P Bernal S Rodriguez MJ Torné L et al.

Novel PLEKHG5 mutations in a patient with childhood-onset lower motor neuron disease.

Ann Clin Transl Neurol. 2020; (acn3.51265)https://doi.org/10.1002/acn3.51265View in Article Scopus (0) PubMed Crossref Google ScholarÖzoğuz A Uyan Ö Birdal G Iskender C Kartal E Lahut S et al.

The distinct genetic pattern of ALS in Turkey and novel mutations.

Neurobiol Aging. 2015; 36: 1764.e9-1764.e18https://doi.org/10.1016/j.neurobiolaging.2014.12.032View in Article Scopus (52) Crossref Google ScholarTankisi H Pugdahl K Beniczky S Andersen H

Fuglsang-Frederiksen A. Evidence-based recommendations for examination and diagnostic strategies of polyneuropathy electrodiagnosis.

Clin Neurophysiol Pract. 2019; 4: 214-222https://doi.org/10.1016/j.cnp.2019.10.005View in Article Scopus (18) PubMed Abstract Full Text Full Text PDF Google ScholarVan Den Bergh PYK Hadden RDM Bouche P Cornblath DR Hahn A Illa I et al.

European federation of neurological societies/peripheral nerve society guideline on management of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society - First Revision.

Eur J Neurol. 2010; 17: 356-363https://doi.org/10.1111/j.1468-1331.2009.02930.xView in Article Scopus (570) PubMed Crossref Google ScholarDubowitz V Sewry CA.

Muscle Biopsy: a Practical Approach.

Saunders Elsevier, Philadelphia2007View in Article Google ScholarPipis M Rossor AM Laura M Reilly MM.

Next-generation sequencing in Charcot–Marie–Tooth disease: opportunities and challenges.

Nat Rev Neurol. 2019; 15: 644-656https://doi.org/10.1038/s41582-019-0254-5View in Article Scopus (34) PubMed Crossref Google ScholarReilly M.

Classification and diagnosis of the inherited neuropathies.

Ann Indian Acad Neurol. 2009; 12: 80-88https://doi.org/10.4103/0972-2327.53075View in Article Scopus (9) PubMed Crossref Google ScholarPrevitali SC Zhao E Lazarevic D Pipitone GB Fabrizi GM Manganelli F et al.

Expanding the spectrum of genes responsible for hereditary motor neuropathies.

J Neurol Neurosurg Psychiatry. 2019; 90https://doi.org/10.1136/jnnp-2019-320717View in Article Scopus (10) PubMed Crossref Google ScholarLonsdale J Thomas J Salvatore M Phillips R Lo E Shad S et al.

The Genotype-Tissue Expression (GTEx) project.

Nat Genet. 2013; 45: 580-585https://doi.org/10.1038/ng.2653View in Article Scopus (2991) PubMed Crossref Google ScholarLüningschrör P Binotti B Dombert B Heimann P Perez-Lara A Slotta C et al.

Plekhg5-regulated autophagy of synaptic vesicles reveals a pathogenic mechanism in motoneuron disease.

Nat Commun. 2017; 8https://doi.org/10.1038/s41467-017-00689-zView in Article Scopus (28) PubMed Crossref Google ScholarEstrach S Schmidt S Diriong S Penna A Blangy A Fort P et al.

The human Rho-GEF Trio and its target GTPase RhoG are involved in the NGF pathway, leading to neurite outgrowth.

Curr Biol. 2002; 12: 307-312https://doi.org/10.1016/S0960-9822(02)00658-9View in Article Scopus (124) PubMed Abstract Full Text Full Text PDF Google ScholarMay V Schiller MR Eipper BA Mains RE.

Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms.

J Neurosci. 2002; 22: 6980-6990https://doi.org/10.1523/jneurosci.22-16-06980.2002View in Article Scopus (77) PubMed Crossref Google ScholarLüningschrör P Slotta C Heimann P Briese M Weikert UM Massih B et al.

Absence of Plekhg5 Results in Myelin Infoldings Corresponding to an Impaired Schwann Cell Autophagy, and a Reduced T-Cell Infiltration Into Peripheral Nerves.

Front Cell Neurosci. 2020; 14https://doi.org/10.3389/fncel.2020.00185View in Article Scopus (1) PubMed Crossref Google ScholarYger M Stojkovic T Tardieu S Maisonobe T Brice A Echaniz-Laguna A et al.

Characteristics of clinical and electrophysiological pattern of Charcot-Marie-Tooth 4C.

J Peripher Nerv Syst. 2012; 17: 112-122https://doi.org/10.1111/j.1529-8027.2012.00382.xView in Article Scopus (35) PubMed Crossref Google ScholarCottenie E Menezes MP Rossor AM Morrow JM Yousry TA Dick DJ et al.

Rapidly progressive asymmetrical weakness in Charcot-Marie-Tooth disease type 4J resembles chronic inflammatory demyelinating polyneuropathy.

Neuromuscul Disord. 2013; 23: 399-403https://doi.org/10.1016/j.nmd.2013.01.010View in Article Scopus (30) PubMed Abstract Full Text Full Text PDF Google ScholarLi J Stefanelli M.

Conduction Block in Charcot-Marie Tooth Neuropathy Type 4J (230).

Neurology. 2020; 94: 230View in Article Google ScholarMurphy SM Laurá M Blake J Polke J Bremner F Reilly MM.

Conduction block and tonic pupils in Charcot-Marie-Tooth disease caused by a myelin protein zero p.Ile112Thr mutation.

Neuromuscul Disord. 2011; 21: 223-226https://doi.org/10.1016/j.nmd.2010.12.010View in Article Scopus (18) PubMed Abstract Full Text Full Text PDF Google ScholarCiotti P Luigetti M Geroldi A Capponi S Pezzini I Gulli R et al.

A novel LITAF/SIMPLE mutation within a family with a demyelinating form of Charcot-Marie-Tooth disease.

J Neurol Sci. 2014; 343: 183-186https://doi.org/10.1016/j.jns.2014.05.029View in Article Scopus (9) PubMed Abstract Full Text Full Text PDF Google ScholarPareyson D Scaioli V Laurà M.

Clinical and electrophysiological aspects of charcot-marie-tooth disease.

NeuroMolecular Med. 2006; 8: 3-22https://doi.org/10.1385/NMM:8:1-2:3View in Article Scopus (121) PubMed Crossref Google ScholarTaniguchi T Ando M Okamoto Y Yoshimura A Higuchi Y Hashiguchi A et al.

Genetic spectrum of Charcot–Marie–Tooth disease associated with myelin protein zero gene variants in Japan.

Clin Genet. 2021; 99: 359-375https://doi.org/10.1111/cge.13881View in Article Scopus (0) PubMed Crossref Google ScholarJordan A Nagaraj A Hoyle JC Stino AM Arnold WD Elsheikh B.

Elevated Creatinine Kinase in Peripheral Neuropathy Is Associated With Muscle Cramping.

Front Neurol. 2021; 12https://doi.org/10.3389/fneur.2021.613599View in Article Scopus (0) Crossref Google ScholarHattori N Yamamoto M Yoshihara T Koike H Nakagawa M Yoshikawa H et al.

Demyelinating and axonal features of Charcot-Marie-Tooth disease with mutations of myelin-related proteins (PMP22, MPZ and Cx32): A clinicopathological study of 205 Japanese patients.

Brain. 2003; 126: 134-151https://doi.org/10.1093/brain/awg012View in Article Scopus (167) PubMed Crossref Google ScholarSarkozy A Foley AR Zambon AA Bönnemann CG Muntoni F.

LAMA2-Related Dystrophies: Clinical Phenotypes, Disease Biomarkers, and Clinical Trial Readiness.

Front Mol Neurosci. 2020; 13https://doi.org/10.3389/fnmol.2020.00123View in Article Scopus (3) PubMed Crossref Google ScholarVainzof M Marie SKN Reed UC Schwartzmann JS Pavanello RCM Passos-Bueno MR et al.

Deficiency of merosin (laminin M or α2) in congenital muscular dystrophy associated with cerebral white matter alterations.

Neuropediatrics. 1995; 26: 293-297https://doi.org/10.1055/s-2007-979777View in Article Scopus (45) PubMed Crossref

留言 (0)

沒有登入
gif