Electrophysiological properties of maxillary trigeminal Aβ-afferent neurons of rats

1. Light, AR. Peripheral sensory systems. In: Dyck, PJ, Griffin, JW, Low, PA, et al. (eds) Peripheral neuropathy. Philadelphia: W. B. Saunders, 1993, pp. 149–165.
Google Scholar2. Vermeiren, S, Bellefroid, EJ, Desiderio, S. Vertebrate sensory ganglia: common and divergent features of the transcriptional programs generating their functional specialization. Front Cell Dev Biol 2020; 8: 587699.
Google Scholar | Crossref | Medline3. Li, L, Rutlin, M, Abraira, VE, Cassidy, C, Kus, L, Gong, S, Jankowski, MP, Luo, W, Heintz, N, Koerber, HR, Woodbury, CJ, Ginty, DD. The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 2011; 147: 1615–1627.
Google Scholar | Crossref | Medline | ISI4. Djouhri, L, Lawson, SN. Abeta-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 2004; 46: 131–145.
Google Scholar | Crossref | Medline5. Fang, X, McMullan, S, Lawson, SN, Djouhri, L. Electrophysiological differences between nociceptive and non-nociceptive dorsal root ganglion neurones in the rat in vivo. J Physiol 2005; 565: 927–943.
Google Scholar | Crossref | Medline6. Koerber, HR, Druzinsky, RE, Mendell, LM. Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. J Neurophysiol 1988; 60: 1584–1596.
Google Scholar | Crossref | Medline7. Lawson, SN, Fang, X, Djouhri, L. Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, abeta-nociceptors, moderate pressure receptors and their receptive field depths. Curr Opin Physiol 2019; 11: 125–146.
Google Scholar | Crossref | Medline8. Djouhri, L. L5 spinal nerve axotomy induces sensitization of cutaneous L4 abeta-nociceptive dorsal root ganglion neurons in the rat in vivo. Neurosci Lett 2016; 624: 72–77.
Google Scholar | Crossref | Medline9. Tashima, R, Koga, K, Sekine, M, Kanehisa, K, Kohro, Y, Tominaga, K, Matsushita, K, Tozaki-Saitoh, H, Fukazawa, Y, Inoue, K, Yawo, H, Furue, H, Tsuda, M. Optogenetic activation of non-nociceptive abeta fibers induces neuropathic pain-like sensory and emotional behaviors after nerve injury in rats. eNeuro 2018; 5: ENEURO.0450-17.2018.
Google Scholar | Crossref | Medline10. Ritter, AM, Mendell, LM. Somal membrane properties of physiologically identified sensory neurons in the rat: effects of nerve growth factor. J Neurophysiol 1992; 68: 2033–2041.
Google Scholar | Crossref | Medline11. Rose, RD, Koerber, HR, Sedivec, MJ, Mendell, LM. Somal action potential duration differs in identified primary afferents. Neurosci Lett 1986; 63: 259–264.
Google Scholar | Crossref | Medline12. Kanda, H, Ling, J, Chang, YT, Erol, F, Viatchenko-Karpinski, V, Yamada, A, Noguchi, K, Gu, JG. Kv4.3 channel dysfunction contributes to trigeminal neuropathic pain manifested with orofacial cold hypersensitivity in rats. J Neurosci 2021; 41: 2091–2105.
Google Scholar | Crossref | Medline13. Ling, J, Erol, F, Viatchenko-Karpinski, V, Kanda, H, Gu, JG. Orofacial neuropathic pain induced by oxaliplatin: downregulation of KCNQ2 channels in V2 trigeminal ganglion neurons and treatment by the KCNQ2 channel potentiator retigabine. Mol Pain 2017; 13: 1744806917724715.
Google Scholar | SAGE Journals | ISI14. Viatchenko-Karpinski, V, Erol, F, Ling, J, Reed, W, Gu, JG. Orofacial operant behaviors and electrophysiological properties of trigeminal ganglion neurons following masseter muscle inflammation in rats. Neurosci Lett 2019; 694: 208–214.
Google Scholar | Crossref | Medline15. Viatchenko-Karpinski, V, Ling, J, Gu, JG. Down-regulation of Kv4.3 channels and a-type K(+) currents in V2 trigeminal ganglion neurons of rats following oxaliplatin treatment. Mol Pain 2018; 14: 1744806917750995.
Google Scholar | SAGE Journals | ISI16. Viatchenko-Karpinski, V, Gu, JG. Mechanical sensitivity and electrophysiological properties of acutely dissociated dorsal root ganglion neurons of rats. Neurosci Lett 2016; 634: 70–75.
Google Scholar | Crossref | Medline17. Kitagawa, J, Takeda, M, Suzuki, I, Kadoi, J, Tsuboi, Y, Honda, K, Matsumoto, S, Nakagawa, H, Tanabe, A, Iwata, K. Mechanisms involved in modulation of trigeminal primary afferent activity in rats with peripheral mononeuropathy. Eur J Neurosci 2006; 24: 1976–1986.
Google Scholar | Crossref | Medline | ISI18. Birren, JE, Wall, PD. Age changes in conduction velocity, refractory period, number of fibers, connective tissue space and blood vessels in sciatic nerve of rats. J Comp Neurol 1956; 104: 1–16.
Google Scholar | Crossref | Medline19. Wu, Q, Henry, JL. Delayed onset of changes in soma action potential genesis in nociceptive A-beta DRG neurons in vivo in a rat model of osteoarthritis. Mol Pain 2009; 5: 57.
Google Scholar | SAGE Journals20. Devor, M. Ectopic discharge in abeta afferents as a source of neuropathic pain. Exp Brain Res 2009; 196: 115–128.
Google Scholar | Crossref | Medline | ISI21. Wu, Q, Henry, JL. Changes in abeta non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain. Mol Pain 2010; 6: 37.
Google Scholar | SAGE Journals22. Zhu, YF, Henry, JL. Excitability of abeta sensory neurons is altered in an animal model of peripheral neuropathy. BMC Neurosci 2012; 13: 15.
Google Scholar | Crossref | Medline23. Xu, ZZ, Kim, YH, Bang, S, Zhang, Y, Berta, T, Wang, F, Oh, SB, Ji, RR. Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nat Med 2015; 21: 1326–1331.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif