The role of tazemetostat in relapsed/refractory follicular lymphoma

1. Teras, LR, DeSantis, CE, Cerhan, JR, et al. 2016 US lymphoid malignancy statistics by World Health Organization subtypes. CA Cancer J Clin 2016; 66: 443–459.
Google Scholar | Crossref | Medline2. Tan, D, Horning, SJ, Hoppe, RT, et al. Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: the Stanford University experience. Blood 2013; 122: 981–987.
Google Scholar | Crossref | Medline | ISI3. Shadman, M, Li, H, Rimsza, L, et al. Continued excellent outcomes in previously untreated patients with follicular lymphoma after treatment with CHOP plus rituximab or CHOP plus 131I-tositumomab: long-term follow-up of phase III randomized study SWOG-S0016. J Clin Oncol 2018; 36: 697–703.
Google Scholar | Crossref | Medline4. Bachy, E, Seymour, JF, Feugier, P, et al. Sustained progression-free survival benefit of rituximab maintenance in patients with follicular lymphoma: long-term results of the PRIMA study. J Clin Oncol 2019; 37: 2815–2824.
Google Scholar | Crossref | Medline5. Luminari, S, Ferrari, A, Manni, M, et al. Long-term results of the FOLL05 trial comparing R-CVP versus R-CHOP versus R-FM for the initial treatment of patients with advanced-stage symptomatic follicular lymphoma. J Clin Oncol 2018; 36: 689–696.
Google Scholar | Crossref | Medline6. Marcus, R, Davies, A, Ando, K, et al. Obinutuzumab for the first-line treatment of follicular lymphoma. N Engl J Med 2017; 377: 1331–1344.
Google Scholar | Crossref | Medline7. Gopal, AK, Kahl, BS, de Vos, S, et al. PI3Kdelta inhibition by idelalisib in patients with relapsed indolent lymphoma. N Engl J Med 2014; 370: 1008–1018.
Google Scholar | Crossref | Medline | ISI8. Dreyling, M, Santoro, A, Mollica, L, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol 2017; 35: 3898–3905.
Google Scholar | Crossref | Medline9. Flinn, IW, Miller, CB, Ardeshna, KM, et al. DYNAMO: a phase II study of duvelisib (IPI-145) in patients with refractory indolent non-Hodgkin lymphoma. J Clin Oncol 2019; 37: 912–922.
Google Scholar | Crossref | Medline10. Fowler, NH, Samaniego, F, Jurczak, W, et al. Umbralisib, a dual PI3Kδ/CK1ε inhibitor in patients with relapsed or refractory indolent lymphoma. J Clin Oncol. Epub ahead of print 8 March 2021. DOI: 10.1200/JCO.20.03433.
Google Scholar | Crossref | Medline11. Jacobson, CA, Chavez, JC, Sehgal, AR, et al. Interim analysis of ZUMA-5: A phase II study of axicabtagene ciloleucel (axi-cel) in patients (pts) with Relapsed/Refractory indolent Non-Hodgkin Lymphoma (R/R iNHL). J Clin Oncol 2020; 38 (Suppl. 15): 8008.
Google Scholar | Crossref12. Carbone, A, Roulland, S, Gloghini, A, et al. Follicular lymphoma. Nat Rev Dis Primers 2019; 5: 83.
Google Scholar | Crossref | Medline13. Yunis, JJ, Oken, MM, Kaplan, ME, et al. Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin’s lymphoma. N Engl J Med 1982; 307: 1231–1236.
Google Scholar | Crossref | Medline | ISI14. Tsujimoto, Y, Cossman, J, Jaffe, E, et al. Involvement of the bcl-2 gene in human follicular lymphoma. Science 1985; 228: 1440–1443.
Google Scholar | Crossref | Medline | ISI15. Tsujimoto, Y, Gorham, J, Cossman, J, et al. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 1985; 229: 1390–1393.
Google Scholar | Crossref | Medline | ISI16. Roulland, S, Navarro, JM, Grenot, P, et al. Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med 2006; 203: 2425–2431.
Google Scholar | Crossref | Medline | ISI17. Roulland, S, Kelly, RS, Morgado, E, et al. t(14;18) translocation: a predictive blood biomarker for follicular lymphoma. J Clin Oncol 2014; 32: 1347–1355.
Google Scholar | Crossref | Medline18. Green, MR. Chromatin modifying gene mutations in follicular lymphoma. Blood 2018; 131: 595–604.
Google Scholar | Crossref | Medline19. Morin, RD, Mendez-Lago, M, Mungall, AJ, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011; 476: 298–303.
Google Scholar | Crossref | Medline | ISI20. Zhang, J, Dominguez-Sola, D, Hussein, S, et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med 2015; 21: 1190–1198.
Google Scholar | Crossref | Medline21. Okosun, J, Bödör, C, Wang, J, et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 2014; 46: 176–181.
Google Scholar | Crossref | Medline22. Comet, I, Riising, EM, Leblanc, B, et al. Maintaining cell identity: PRC2-mediated regulation of transcription and cancer. Nat Rev Cancer 2016; 16: 803–810.
Google Scholar | Crossref | Medline23. Su, IH, Basavaraj, A, Krutchinsky, AN, et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat Immunol 2003; 4: 124–131.
Google Scholar | Crossref | Medline24. van Galen, JC, Dukers, DF, Giroth, C, et al. Distinct expression patterns of polycomb oncoproteins and their binding partners during the germinal center reaction. Eur J Immunol 2004; 34: 1870–1881.
Google Scholar | Crossref | Medline25. Béguelin, W, Popovic, R, Teater, M, et al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation. Cancer Cell 2013; 23: 677–692.
Google Scholar | Crossref | Medline | ISI26. Souroullas, GP, Jeck, WR, Parker, JS, et al. An oncogenic Ezh2 mutation induces tumors through global redistribution of histone 3 lysine 27 trimethylation. Nat Med 2016; 22: 632–640.
Google Scholar | Crossref | Medline27. Sneeringer, CJ, Scott, MP, Kuntz, KW, et al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 2010; 107: 20980–20985.
Google Scholar | Crossref | Medline | ISI28. Yap, DB, Chu, J, Berg, T, et al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation. Blood 2011; 117: 2451–2459.
Google Scholar | Crossref | Medline | ISI29. Majer, CR, Jin, L, Scott, MP, et al. A687V EZH2 is a gain-of-function mutation found in lymphoma patients. FEBS Lett 2012; 586: 3448–3451.
Google Scholar | Crossref | Medline30. McCabe, MT, Graves, AP, Ganji, G, et al. Mutation of A677 in histone methyltransferase EZH2 in human B-cell lymphoma promotes hypertrimethylation of histone H3 on lysine 27 (H3K27). Proc Natl Acad Sci U S A 2012; 109: 2989–2994.
Google Scholar | Crossref | Medline | ISI31. Huet, S, Xerri, L, Tesson, B, et al. EZH2 alterations in follicular lymphoma: biological and clinical correlations. Blood Cancer J 2017; 7: e555.
Google Scholar | Crossref | Medline32. Velichutina, I, Shaknovich, R, Geng, H, et al. EZH2-mediated epigenetic silencing in germinal center B cells contributes to proliferation and lymphomagenesis. Blood 2010; 116: 5247–5255.
Google Scholar | Crossref | Medline | ISI33. Caganova, M, Carrisi, C, Varano, G, et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 2013; 123: 5009–5022.
Google Scholar | Crossref | Medline34. Kuppers, R, Stevenson, FK. Critical influences on the pathogenesis of follicular lymphoma. Blood 2018; 131: 2297–2306.
Google Scholar | Crossref | Medline35. Wang, X, Brea, LT, Yu, J. Immune modulatory functions of EZH2 in the tumor microenvironment: implications in cancer immunotherapy. Am J Clin Exp Urol 2019; 7: 85–91.
Google Scholar | Medline36. Béguelin, W, Teater, M, Meydan, C, et al. Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response. Cancer Cell 2020; 37: 655–673.e11.
Google Scholar | Crossref | Medline37. Stairiker, CJ, Thomas, GD, Salek-Ardakani, S. EZH2 as a regulator of CD8+ T cell fate and function. Front Immunol 2020; 11: 593203.
Google Scholar | Crossref | Medline38. Pastore, A, Jurinovic, V, Kridel, R, et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: a retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 2015; 16: 1111–1122.
Google Scholar | Crossref | Medline39. Lockmer, S, Ren, W, Brodtkorb, M, et al. M7-FLIPI is not prognostic in follicular lymphoma patients with first-line rituximab chemo-free therapy. Br J Haematol 2020; 188: 259–267.
Google Scholar | Crossref | Medline40. Knutson, SK, Wigle, TJ, Warholic, NM, et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat Chem Biol 2012; 8: 890–896.
Google Scholar | Crossref | Medline | ISI41. McCabe, MT, Ott, HM, Ganji, G, et al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature 2012; 492: 108–112.
Google Scholar | Crossref | Medline | ISI42. Qi, W, Chan, H, Teng, L, et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc Natl Acad Sci U S A 2012; 109: 21360–21365.
Google Scholar | Crossref | Medline | ISI43. Knutson, SK, Kawano, S, Minoshima, Y, et al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma. Mol Cancer Ther 2014; 13: 842–854.
Google Scholar | Crossref | Medline44. Italiano, A, Soria, J-C, Toulmonde, M, et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol 2018; 19: 649–659.
Google Scholar | Crossref | Medline45. Cheson, BD, Pfistner, B, Juweid, ME, et al. Revised response criteria for malignant lymphoma. J Clin Oncol 2007; 25: 579–586.
Google Scholar | Crossref | Medline | ISI46. Morishima, S, Ishitsuka, K, Izutsu, K, et al. First-in-human study of the EZH1/2 dual inhibitor valemetostat in relapsed or refractory Non-Hodgkin Lymphoma (NHL) - updated results focusing on adult T-cell leukemia-lymphoma (ATL). Blood 2019; 134: 4025.
Google Scholar | Crossref47. Yap, TA, Winter, JN, Giulino-Roth, L, et al. Phase I study of the novel enhancer of zeste homolog 2 (EZH2) inhibitor GSK2816126 in patients with advanced hematologic and solid tumors. Clin Cancer Res 2019; 25: 7331–7339.

留言 (0)

沒有登入
gif