Neuronal Pentraxin 1 Promotes Hypoxic-Ischemic Neuronal Injury by Impairing Mitochondrial Biogenesis via Interactions With Active Bax[6A7] and Mitochondrial Hexokinase II

Achanta, G., Sasaki, R., Feng, L., Carew, J. S., Lu, W., Pelicano, H., Keating, M. J., Huang, P. (2005). Novel role of p53 in maintaining mitochondrial genetic stability through interaction with DNA pol gamma. The Embo Journal, 24(19), 3482–3492.
Google Scholar | Crossref | Medline Al Rahim, M., Hossain, M. A. (2013). Genetic deletion of NP1 prevents hypoxic-ischemic neuronal death via reducing AMPA receptor synaptic localization in hippocampal neurons. Journal of the American Heart Association, 2(1), e006098.
Google Scholar | Crossref | Medline Al Rahim, M., Nakajima, A., Saigusa, D., Tetsu, N., Maruyama, Y., Shibuya, M., Yamakoshi, H., Tomioka, Y., Iwabuchi, Y., Ohizumi, Y., Yamakuni, T. (2009). 4'-Demethylnobiletin, a bioactive metabolite of nobiletin enhancing PKA/ERK/CREB signaling, rescues learning impairment associated with NMDA receptor antagonism via stimulation of the ERK Cascade. Biochemistry, 48(32), 7713–7721.
Google Scholar | Crossref | Medline Al Rahim, M., Thatipamula, S., Hossain, M. A. (2013). Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury. Neurobiology of Disease, 50, 59–68.
Google Scholar | Crossref | Medline Barks, J. D., Silverstein, F. S. (1992). Excitatory amino acids contribute to the pathogenesis of perinatal hypoxic-ischemic brain injury. Brain Pathology (Zurich, Switzerland), 2(3), 235–243.
Google Scholar | Crossref | Medline Blomgren, K., Hagberg, H. (2006). Free radicals, mitochondria, and hypoxia-ischemia in the developing brain. Free Radical Biology & Medicine, 40(3), 388–397.
Google Scholar | Crossref | Medline Chen, H., Hu, C. J., He, Y. Y., Yang, D. I., Xu, J., Hsu, C. Y. (2001). Reduction and restoration of mitochondrial DNA content after focal cerebral ischemia/reperfusion. Stroke, 32(10), 2382–2387.
Google Scholar | Crossref | Medline Cheng, Y., Deshmukh, M., D'Costa, A., Demaro, J. A., Gidday, J. M., Shah, A., Sun, Y., Jacquin, M. F., Johnson, E. M., Holtzman, D. M. (1998). Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. The Journal of Clinical Investigation, 101(9), 1992–1999.
Google Scholar | Crossref | Medline Chiara, F., Castellaro, D., Marin, O., Petronilli, V., Brusilow, W. S., Juhaszova, M., Sollott, S. J., Forte, M., Bernardi, P., Rasola, A. (2008). Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One, 3(3), e1852.
Google Scholar | Crossref | Medline Clayton, K. B., Podlesniy, P., Figueiro-Silva, J., López-Doménech, G., Benitez, L., Enguita, M., Abad, M. A., Soriano, E., Trullas, R. (2012). NP1 regulates neuronal activity-dependent accumulation of BAX in mitochondria and mitochondrial dynamics. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(4), 1453–1466.
Google Scholar | Crossref | Medline Colombini, M. (2004). VDAC: The channel at the interface between mitochondria and the cytosol. Molecular and Cellular Biochemistry, 256(1/2), 107–115.
Google Scholar | Crossref | Medline Fiskum, G. (2000). Mitochondrial participation in ischemic and traumatic neural cell death. Journal of Neurotrauma, 17(10), 843–855.
Google Scholar | Crossref | Medline | ISI Gall, J. M., Wong, V., Pimental, D. R., Havasi, A., Wang, Z., Pastorino, J. G., Bonegio, R. G. B., Schwartz, J. H., Borkan, S. C. (2011). Hexokinase regulates bax-mediated mitochondrial membrane injury following ischemic stress. Kidney International, 79(11), 1207–1216.
Google Scholar | Crossref | Medline Galluzzi, L., Blomgren, K., Kroemer, G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nature Reviews. Neuroscience, 10(7), 481–494.
Google Scholar | Crossref | Medline | ISI Gimenez-Cassina, A., Lim, F., Cerrato, T., Palomo, G. M., Diaz-Nido, J. (2009). Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3. The Journal of Biological Chemistry, 284(5), 3001–3011.
Google Scholar | Crossref | Medline Gupta, S., Knowlton, A. A. (2002). Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation, 106(21), 2727–2733.
Google Scholar | Crossref | Medline Gutsaeva, D. R., Carraway, M. S., Suliman, H. B., Demchenko, I. T., Shitara, H., Yonekawa, H., Piantadosi, C. A. (2008). Transient hypoxia stimulates mitochondrial biogenesis in brain subcortex by a neuronal nitric oxide synthase-dependent mechanism. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(9), 2015–2024.
Google Scholar | Crossref | Medline Hagberg, H. (2004). Mitochondrial impairment in the developing brain after hypoxia-ischemia. Journal of Bioenergetics and Biomembranes, 36(4), 369–373.
Google Scholar | Crossref | Medline Halestrap, A. P., Doran, E., Gillespie, J. P., O’Toole, A. (2000). Mitochondria and cell death. Biochemical Society Transactions, 28(2), 170–177.
Google Scholar | Crossref | Medline Hossain, M. A., Fielding, K. E., Trescher, W. H., Ho, T., Wilson, M. A., Laterra, J. (1998). Human FGF-1 gene delivery protects against quinolinate-induced striatal and hippocampal injury in neonatal rats. European Journal of Neuroscience, 10(8), 2490–2499.
Google Scholar | Crossref | Medline Hossain, M. A., Russell, J. C., O'Brien, R. (2004). Neuronal pentraxin 1: A novel mediator of hypoxic-ischemic injury in neonatal brain. Journal of Neuroscience, 24(17), 4187–4196.
Google Scholar | Crossref | Medline Hsu, Y. T., Youle, R. J. (1998). Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. The Journal of Biological Chemistry, 273(17), 10777–10783.
Google Scholar | Crossref | Medline Kaufman, B. A., Kolesar, J. E., Perlman, P. S., Butow, R. A. (2003). A function for the mitochondrial chaperonin Hsp60 in the structure and transmission of mitochondrial DNA nucleoids in Saccharomyces cerevisiae. The Journal of Cell Biology, 163(3), 457–461.
Google Scholar | Crossref | Medline Majewski, N., Nogueira, V., Bhaskar, P., Coy, P. E., Skeen, J. E., Gottlob, K., Chandel, N. S., Thompson, C. B., Robey, R. B., Hay, N. (2004). Hexokinase-mitochondria interaction mediated by akt is required to inhibit apoptosis in the presence or absence of bax and bak. Molecular Cell, 16(5), 819–830.
Google Scholar | Crossref | Medline | ISI Mattson, M. P., Gleichmann, M., Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron, 60(5), 748–766.
Google Scholar | Crossref | Medline O’Donnell, K. C., Vargas, M. E., Sagasti, A. (2013). WldS and PGC-1alpha regulate mitochondrial transport and oxidation state after axonal injury. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 33(37), 14778–14790.
Google Scholar | Crossref | Medline Pastorino, J. G., Hoek, J. B. (2003). Hexokinase II: The integration of energy metabolism and control of apoptosis. Current Medicinal Chemistry, 10(16), 1535–1551.
Google Scholar | Crossref | Medline Pastorino, J. G., Hoek, J. B., Shulga, N. (2005). Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Research, 65(22), 10545–10554.
Google Scholar | Crossref | Medline Pastorino, J. G., Shulga, N., and., & Hoek, J. B. (2002). Mitochondrial binding of hexokinase II inhibits bax-induced cytochrome c release and apoptosis. The Journal of Biological Chemistry, 277(9), 7610–7618.
Google Scholar | Crossref | Medline Rintoul, G. L., Reynolds, I. J. (2010). Mitochondrial trafficking and morphology in neuronal injury. Biochimica et Biophysica Acta, 1802(1), 143–150.
Google Scholar | Crossref | Medline Russell, J. C., Kishimoto, K., O'Driscoll, C., Hossain, M. A. (2011). Neuronal pentraxin 1 induction in hypoxic-ischemic neuronal death is regulated via a glycogen synthase kinase-3alpha/beta dependent mechanism. Cellular Signalling, 23(4), 673–682.
Google Scholar | Crossref | Medline Scarpulla, R. C. (2006). Nuclear control of respiratory gene expression in mammalian cells. Journal of Cellular Biochemistry, 97(4), 673–683.
Google Scholar | Crossref | Medline | ISI Sharma, J., Johnston, M. V., and., & Hossain, M. A. (2014). Sex differences in mitochondrial biogenesis determine neuronal death and survival in response to oxygen glucose deprivation and reoxygenation. BMC Neuroscience, 15(1), 9.
Google Scholar | Crossref | Medline St-Pierre, J., Drori, S., Uldry, M., Silvaggi, J. M., Rhee, J., Jäger, S., Handschin, C., Zheng, K., Lin, J., Yang, W., Simon, D. K., Bachoo, R., Spiegelman, B. M. (2006). Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 127(2), 397–408.
Google Scholar | Crossref | Medline | ISI Thatipamula, S., Al Rahim, M., Zhang, J., Hossain, M. A. (2015). Genetic deletion of neuronal pentraxin 1 expression prevents brain injury in a neonatal mouse model of cerebral hypoxia-ischemia. Neurobiology of Disease, 75, 15–30.
Google Scholar | Crossref | Medline Valerio, A., Bertolotti, P., Delbarba, A., Perego, C., Dossena, M., Ragni, M., Spano, P., Carruba, M. O., De Simoni, M. G., Nisoli, E. (2011). Glycogen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS production. Journal of Neurochemistry, 116(6), 1148–1159.
Google Scholar | Crossref | Medline Vyssokikh, M., Brdiczka, D. (2004). VDAC and peripheral channelling complexes in health and disease. Molecular and Cellular Biochemistry, 256–257(1–2), 117–126.
Google Scholar | Crossref | Medline Wu, C., Zhan, R. Z., Qi, S., Fujihara, H., Taga, K., Shimoji, K. (2001). A forebrain ischemic preconditioning model established in C57Black/Crj6 mice. Journal of Neuroscience Methods, 107(1–2), 101–106.
Google Scholar | Crossref | Medline Yin, W., Signore, A. P., Iwai, M., Cao, G., Gao, Y., Chen, J. (2008). Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke, 39(11), 3057–3063.
Google Scholar | Crossref | Medline Youle, R. J., Strasser, A. (2008). The BCL-2 protein family: Opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology, 9(1), 47–59.
Google Scholar | Crossref | Medline | ISI Zaid, H., Abu-Hamad, S., Israelson, A., Nathan, I., Shoshan-Barmatz, V. (2005). The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death and Differentiation, 12(7), 751–760.
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif