MiR-130a-3p Has Protective Effects in Alzheimer’s Disease via Targeting DAPK1

1. Tiepolt, S, Patt, M, Aghakhanyan, G, et al. Current radiotracers to image neurodegenerative diseases. EJNMMI Radiopharm Chem. 2019;4(1):17. doi:10.1186/s41181-019-0070-7
Google Scholar | Crossref | Medline2. Li, X, Dai, J, Zhao, S, Liu, W, Li, H. Comparison of the value of Mini-Cog and MMSE screening in the rapid identification of Chinese outpatients with mild cognitive impairment. Medicine (Baltimore). 2018;97(22):e10966. doi:10.1097/MD.0000000000010966
Google Scholar | Crossref | Medline3. Liu, W, Sun, F, Wan, M, et al. Beta-sheet breaker peptide-HPYD for the treatment of Alzheimer’s disease: primary studies on behavioral test and transcriptional profiling. Front Pharmacol. 2018;8:969. doi:10.3389/fphar.2017.00969
Google Scholar | Crossref | Medline4. Bustamante, HA, Gonzalez, AE, Cerda-Troncoso, C, et al. Interplay between the autophagy-lysosomal pathway and the ubiquitin-proteasome system: a target for therapeutic development in Alzheimer’s disease. Front Cell Neurosci. 2018;12:126. doi:10.3389/fncel.2018.00126
Google Scholar | Crossref | Medline5. Cai, H, Ning, S, Li, W, Li, X, Xiao, S, Sun, L. Patient with frontal-variant syndrome in early-onset Alzheimer’s disease. Gen Psychiatr. 2020;33(2):e100173. doi:10.1136/gpsych-2019-100173
Google Scholar | Crossref | Medline6. Chen, SN, Chang, R, Lin, LT, et al. MicroRNA in ovarian cancer: biology, pathogenesis, and therapeutic opportunities. Int J Environ Res Public Health. 2019;16(9):1510. doi:10.3390/ijerph16091510
Google Scholar | Crossref7. Wu, X, Sun, W, Tan, M. Noncoding RNAs in steroid-induced osteonecrosis of the femoral head. Biomed Res Int. 2019;2019:8140595. doi:10.1155/2019/8140595
Google Scholar | Crossref8. Cho, KHT, Xu, B, Blenkiron, C, Fraser, M. Emerging roles of miRNAs in brain development and perinatal brain injury. Front Physiol. 2019;10:227. doi:10.3389/fphys.2019.00227
Google Scholar | Crossref | Medline9. Deng, Y, Zhang, J, Sun, X, et al. miR-132 improves the cognitive function of rats with Alzheimer’s disease by inhibiting the MAPK1 signal pathway. Exp Ther Med. 2020;20(6):159. doi:10.3892/etm.2020.9288
Google Scholar | Crossref | Medline10. Kumar, S, Reddy, PH. A new discovery of MicroRNA-455-3p in Alzheimer’s disease. J Alzheimers Dis. 2019;72(suppl 1):S117–S130. doi:10.3233/JAD-190583
Google Scholar | Crossref | Medline11. Zhao, X, Wang, S, Sun, W. Expression of miR-28-3p in patients with Alzheimer’s disease before and after treatment and its clinical value. Exp Ther Med. 2020;20(3):2218–2226. doi:10.3892/etm.2020.8920
Google Scholar | Medline12. Zhang, D, Yang, S, Toledo, EM, et al. Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. Sci Signal. 2017;10(493). doi:10.1126/scisignal.aal4165
Google Scholar | Crossref13. Greco, SJ, Rameshwar, P. MicroRNAs regulate synthesis of the neurotransmitter substance P in human mesenchymal stem cell-derived neuronal cells. Proc Natl Acad Sci U S A. 2007;104(39):15484–15489. doi:10.1073/pnas.0703037104
Google Scholar | Crossref | Medline | ISI14. Zhang, J, Zhan, Z, Li, X, et al. Intermittent fasting protects against Alzheimer’s disease possible through restoring aquaporin-4 polarity. Front Mol Neurosci. 2017;10:395. doi:10.3389/fnmol.2017.00395
Google Scholar | Crossref | Medline15. Ji, Y, Wang, D, Zhang, B, Lu, H. MiR-361-3p inhibits beta-amyloid accumulation and attenuates cognitive deficits through targeting BACE1 in Alzheimer’s disease. J Integr Neurosci. 2019;18(3):285–291. doi:10.31083/j.jin.2019.03.1136
Google Scholar | Crossref | Medline16. Michalska, P, Leon, R. When it comes to an end: oxidative stress crosstalk with protein aggregation and neuroinflammation induce neurodegeneration. Antioxidants (Basel). 2020;9(8):740. doi:10.3390/antiox9080740
Google Scholar | Crossref17. Chao, AC, Lee, TC, Juo, SH, Yang, DI. Hyperglycemia increases the production of amyloid beta-peptide leading to decreased endothelial tight junction. CNS Neurosci Ther. 2016;22(4):291–297. doi:10.1111/cns.12503
Google Scholar | Crossref | Medline18. Sun, Y, Liang, L, Dong, M, Li, C, Liu, Z, Gao, H. Cofilin 2 in serum as a novel biomarker for Alzheimer’s disease in Han Chinese. Front Aging Neurosci. 2019;11:214. doi:10.3389/fnagi.2019.00214
Google Scholar | Crossref | Medline19. Wang, N, Wang, H, Li, L, Li, Y, Zhang, R. Beta-Asarone inhibits amyloid-beta by promoting autophagy in a cell model of Alzheimer’s disease. Front Pharmacol. 2020;10:1529. doi:10.3389/fphar.2019.01529
Google Scholar | Crossref | Medline20. Krishna, KV, Saha, RN, Dubey, SK. Biophysical, biochemical, and behavioral implications of ApoE3 conjugated donepezil nanomedicine in a abeta1-42 induced Alzheimer’s disease rat model. ACS Chem Neurosci. 2020;11(24):4139–4151. doi:10.1021/acschemneuro.0c00430
Google Scholar | Crossref | Medline21. Grzywa, TM, Klicka, K, Rak, B, et al. Lineage-dependent role of miR-410-3p as oncomiR in gonadotroph and corticotroph pituitary adenomas or tumor suppressor miR in somatotroph adenomas via MAPK, PTEN/AKT, and STAT3 signaling pathways. Endocrine. 2019;65(3):646–655. doi:10.1007/s12020-019-01960-7
Google Scholar | Crossref | Medline22. Amatruda, M, Ippolito, G, Vizzuso, S, Vizzari, G, Banderali, G, Verduci, E. Epigenetic effects of n-3 LCPUFAs: a role in pediatric metabolic syndrome. Int J Mol Sci. 2019;20(9):2118. doi:10.3390/ijms20092118
Google Scholar | Crossref23. Liao, M, Zou, S, Bao, Y, et al. Matrix metalloproteinases are regulated by MicroRNA 320 in macrophages and are associated with aortic dissection. Exp Cell Res. 2018;370(1):98–102. doi:10.1016/j.yexcr.2018.06.011
Google Scholar | Crossref | Medline24. Swarbrick, S, Wragg, N, Ghosh, S, Stolzing, A. Systematic review of miRNA as biomarkers in Alzheimer’s disease. Mol Neurobiol. 2019;56(9):6156–6167. doi:10.1007/s12035-019-1500-y
Google Scholar | Crossref | Medline25. Zhang, CY, Ren, XM, Li, HB, et al. Effect of miR-130a on neuronal injury in rats with intracranial hemorrhage through PTEN/PI3K/AKT signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(11):4890–4897. doi:10.26355/eurrev_201906_18077
Google Scholar | Medline26. Muller-Deile, J, Schroder, P, Beverly-Staggs, L, et al. Overexpression of preeclampsia induced microRNA-26a-5p leads to proteinuria in zebrafish. Sci Rep. 2018;8(1):3621. doi:10.1038/s41598-018-22070-w
Google Scholar | Crossref | Medline27. Yu, H, Sun, J, Jiang, S, Xu, Y. MicroRNA-490-3p regulates cell proliferation and apoptosis in gastric cancer via direct targeting of AKT1. Exp Ther Med. 2019;17(2):1330–1336. doi:10.3892/etm.2018.7042
Google Scholar | Medline28. Feng, M, Zhu, X, Zhuo, C. H19/miR-130a-3p/DAPK1 axis regulates the pathophysiology of neonatal hypoxic-ischemia encephalopathy. Neurosci Res. 2021;163:52–62. doi:10.1016/j.neures.2020.03.005
Google Scholar | Crossref | Medline29. Su, Y, Deng, MF, Xiong, W, et al. MicroRNA-26a/death-associated protein kinase 1 signaling induces synucleinopathy and dopaminergic neuron degeneration in Parkinson’s disease. Biol Psychiatry. 2019;85(9):769–781. doi:10.1016/j.biopsych.2018.12.008
Google Scholar | Crossref | Medline30. Chen, D, Mei, Y, Kim, N, et al. Melatonin directly binds and inhibits death-associated protein kinase 1 function in Alzheimer’s disease. J Pineal Res. 2020;69(2):e12665. doi:10.1111/jpi.12665
Google Scholar | Crossref | Medline

留言 (0)

沒有登入
gif