Unraveling Integration-Segregation Imbalances in Schizophrenia Through Topological High-Order Functional Connectivity

Aine, C., Bockholt, H.J., Bustillo, J., et al. (2017). Multimodal neuroimaging in schizophrenia: Description and dissemination. Neuroinformatics, 15,

Bassett, D., Wymbs, N., Porter, M., Mucha, P., Carlson, J., & Grafton, S. (May 2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences of the United States of America, 108, 7641–6.

Battiston, F., Cencetti, G., Iacopini, I., et al. (2020). Networks beyond pairwise interactions: Structure and dynamics. Physics Reports, 874,

Bishop, C.M. (2007). Pattern Recognition and Machine Learning (Information Science and Statistics). Springer

Calhoun, V., Sui, J., Kiehl, K., Turner, J., Allen, E., & Pearlson, G. (2011). Exploring the psychosis functional connectome: Aberrant intrinsic networks in schizophrenia and bipolar disorder. Frontiers in psychiatry, 2, 75.

PubMed  Google Scholar 

Carandini, M., & Heeger, D. J. (2012). Normalization as a canonical neural computation. Nature Reviews Neuroscience, 13(1), 51–62.

Article  CAS  Google Scholar 

Chan, M., Han, L., Carreno, C., et al. (2021). Long-term prognosis and educational determinants of brain network decline in older adult individuals. Nature Aging, 1,

Chen, D., Fu, Y., & Shang, M. S. (Jul. 2009). A fast and efficient heuristic algorithm for detecting community structures in complex networks. Physica A: Statistical Mechanics and its Applications, 388, 2741–2749.

Correll, C., Martin, A., Patel, C., et al. (2022). Systematic literature review of schizophrenia clinical practice guidelines on acute and maintenance management with antipsychotics. NPJ schizophrenia, 8, 5.

Article  Google Scholar 

Dosenbach, N., Fair, D., Miezin, F., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 11073–8

Duan, J., Xia, M., Womer, F., et al. (2019). Dynamic changes of functional segregation and integration in vulnerability and resilience to schizophrenia. Human Brain Mapping, 40.

Fransson, P., & Strindberg, M. (2023). Brain network integration, segregation and quasi-periodic activation and deactivation during tasks and rest. NeuroImage, 268, 119–890.

Heuvel, M., & Pol, H. (2010). Exploring the brain network: A review on resting-state fmri functional connectivity. European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology, 20, 519–34.

Hummer, T., Yung, M., Goñi, J., et al. (2020). Functional network connectivity in early-stage schizophrenia. Schizophrenia Research, 218.

Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. Neural Information Processing Systems, 25,

Li, Q., Calhoun, V., Ballem, A.R., Yu, S., Malo, J., & Iraji, A. (2023). Aberrant high-order dependencies in schizophrenia resting-state functional MRI networks. in NeurIPS 2023 workshop: Information-Theoretic Principles in Cognitive Systems, 2023. [Online]. Available: https://openreview.net/forum?id=ZgMRaX02ck

Li, Q., Calhoun, V.D., Pham, T.D., & Iraji, A. (2024). Exploring nonlinear dynamics in brain functionality through phase portraits and fuzzy recurrence plots. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34.

Li, Q., Steeg, G.V., Yu, S., & Malo, J. (2022). Functional connectome of the human brain with total correlation. Entropy, 24(12), 2022.

Li, Q., Ver Steeg, G., & Malo, J. (2023). Functional connectivity via total correlation: Analytical results in visual areas. Neurocomputing, 127–143

Li, Q. (2022). Functional connectivity inference from fmri data using multivariate information measures. Neural Networks, 146, 85–97.

Article  PubMed  Google Scholar 

Lord, L.D., Stevner, A., Deco, G., & Kringelbach, M. (2017). Understanding principles of integration and segregation using whole-brain computational connectomics: Implications for neuropsychiatric disorders. Philosophical Transactions of The Royal Society A Mathematical Physical and Engineering Sciences, 375, 20160283.

Passiatore, R., Antonucci, L., Deramus, T., et al. (2022). Agerelated network connectivity pattern changes are associated with risk for psychosis. European Psychiatry, 65, S316–S316.

Article  PubMed Central  Google Scholar 

Power, J., Cohen, A., Nelson, S., et al. (Nov. 2011). Functional network organization of the human brain. Neuron, 72, 665–78.

Relión, J. D. A., Kessler, D., Levina, E., & Taylor, S. F. (2019). Network classification with applications to brain connectomics. The Annals of Applied Statistics, 13(3), 1648–1677.

Google Scholar 

Seguin, C., Sporns, O., & Zalesky, A. (2023). Brain network communication: Concepts, models and applications. Nature Reviews Neuroscience, 24,

Shine, J. (2019). Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences, 23,

Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current opinion in neurobiology, 23.

Wang, X., Chang, Z., & Wang, R. (2023). Opposite effects of positive and negative symptoms on resting-state brain networks in schizophrenia. Communications Biology, 6,

Wang, R., Liu, M., Cheng, X., Wu, Y., Hildebrandt, A., & Zhou, C. (Jun.2021). Segregation, integration, and balance of largescale resting brain networks configure different cognitive abilities. Proceedings of the National Academy of Sciences, 118, e2022288118.

Yang, A.C., Hong, C.J., Liou, Y.J., et al. (2015). Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness: Resting brain complexity and schizophrenia. Human brain mapping, 36.

Yu, Q., Sui, J., Kiehl, K., Pearlson, G., & Calhoun, V. (2013). State-related functional integration and functional segregation brain networks in schizophrenia. Schizophrenia research, 150,

Zhang, J., Barhomi, Y., & Serre, T. (2012). A new biologically inspired color image descriptor. in European Conference on Computer Vision, 2012. [Online]. Available: https://api.semanticscholar.org/CorpusID:703293.

Zhang, H., Chen, X., Zhang, Y., & Shen, D. (2017). Testretest reliability of “high-order" functional connectivity in young healthy adults. Frontiers in Neuroscience, 11

Zhang, Y., Zhang, H., Chen, X., Lee, S. W., & Shen, D. (2017). Hybrid high-order functional connectivity networks using resting-state functional mri for mild cognitive impairment diagnosis. Scientific reports, 7(1), 6530.

Article  PubMed  PubMed Central  Google Scholar 

留言 (0)

沒有登入
gif