A multidimensional adaptive transformer network for fatigue detection

Cao B, Yang C, He K, Fan J, Gao H and Qian P (2024) Internal purity: a differential entropy based internal validation index for Crisp and Fuzzy clustering validation. IEEE Trans Fuzzy Syst 32(10):5660–5673. https://doi.org/10.1109/TFUZZ.2024.3424479

Article  Google Scholar 

Chen L-L, Zhang A, Lou X-G (2019) Cross-subject driver status detection from physiological signals based on hybrid feature selection and transfer learning. Expert Syst Appl 137:266–280

Article  Google Scholar 

Dhiman R (2023) Electroencephalogram channel selection based on pearson correlation coefficient for motor imagery-brain-computer interface. Meas Sens 5:100616

Google Scholar 

Ding Y, Robinson N, Tong C, Q. et al (2023) LGGNet: Learning from local-global-graph representations for brain–computer interface. IEEE Trans Neural Netw Learn Syst 35(7):9773–9786. https://doi.org/10.1109/TNNLS.2023.3236635

Feng J, Wang H (2024) A multi-scale contextual attention network for remote sensing visual question answering. Int J Appl Earth Obs Geoinf 126:103641

Google Scholar 

Gao, Dongrui et al (2023a) EEG driving fatigue detection based on log-Mel spectrogram and convolutional recurrent neural networks. Front Neurosci 17:1136609. https://doi.org/10.3389/fnins.2023.1136609

Article  PubMed  PubMed Central  Google Scholar 

Gao D et al (2024) CSF-GTNet: a novel multi-dimensional feature fusion network based on Convnext-GeLU- BiLSTM for EEG-signals-enabled fatigue driving detection. IEEE J Biomed Health Inform 28(5):2558–2568. https://doi.org/10.1109/JBHI.2023.3240891

Article  PubMed  Google Scholar 

Gao D, Wang K, Wang M, et al (2024) SFT-net: a network for detecting fatigue from EEG signals by combining 4d feature flow and attention mechanism. IEEE J Biomed Health Inform 28(8):4444–4455. https://doi.org/10.1109/JBHI.2023.3285268

Gu X, Cao Z, Jolfaei A et al (2021) EEG-based brain-computer interfaces (BCIs): A survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans Comput Biol Bioinf 18(5):1645–1666

Article  Google Scholar 

Hamza Kheddar, Mustapha Hemis, et al (2024) Automatic speech recognition using advanced deep learning approaches: a survey. Inf Fus 109:102422. https://doi.org/10.1016/j.inffus.2024.102422

Article  Google Scholar 

Han K, Xiao A, Wu E et al (2021) Transformer in transformer. Adv Neural Inf Process Syst 34:15908–15919

Google Scholar 

Han K, Wang Y, Chen H et al (2022) A survey on vision transformer. IEEE Trans Pattern Anal Mach Intell 45(1):87–110

Article  PubMed  Google Scholar 

He, K., Zhang, X., Ren, S., Sun, J (2016) Identity mappings in deep residual networks. In: Proceedings of the computer vision–ECCV 2016: 14th European conference, Amsterdam, The Netherlands, Proceedings, Part IV 14, F, 2016. Springer, Cham. https://doi.org/10.1007/978-3-319-46493-0_38

Hramov AE, Maksimenko VA, Pisarchik AN (2021) Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys Rep 918:1–133

Article  Google Scholar 

Hu J, Min J (2018) Automated detection of driver fatigue based on EEG signals using gradient boosting decision tree model. Cognit Neurodyn 12:431–440

Article  Google Scholar 

Huang G, Hu Z, Chen W et al (2022) M3CV: a multi-subject, multi-session, and multi-task database for EEG-based biometrics challenge. NeuroImage 264:119666

Article  PubMed  Google Scholar 

Jiang Y, Zhang Y, Lin C et al (2020) EEG-based driver drowsiness estimation using an online multi-view and transfer TSK fuzzy system. IEEE Trans Intell Transp Syst 22(3):1752–1764

Article  Google Scholar 

Khan S, Naseer M, Hayat M et al (2022) Transformers in vision: A survey[J]. ACM Computing Surveys (CSUR) 54(10s):1–41

Article  Google Scholar 

Köksoy O (2006) Multiresponse robust design: mean square error (MSE) criterion. Appl Math Comput 175(2):1716–1729

Google Scholar 

Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90

Article  Google Scholar 

Li Q, Luo Z, Qi R and Zheng J (2024a) Automatic searching of lightweight and high-performing CNN architectures for EEG-based driving fatigue detection. IEEE Trans Instrum Meas 73:1–11. https://doi.org/10.1109/TIM.2024.3400360

Article  Google Scholar 

Li R, Hu M, Gao R et al (2024b) TFormer: a time–frequency transformer with batch normalization for driver fatigue recognition. Adv Eng Inform 62:102575

Article  Google Scholar 

Lin Z, Qiu T, Liu P et al (2021) Fatigue driving recognition based on deep learning and graph neural network. Biomed Signal Proc Control 68:102598

Article  Google Scholar 

Liu X, Li G, Wang S et al (2021) Toward practical driving fatigue detection using three frontal EEG channels: a proof-of-concept study. Physiol Meas 42(4):044003

Article  Google Scholar 

Liu F, Chen D, Zhou J et al (2022) A review of driver fatigue detection and its advances on the use of RGB-D camera and deep learning. Eng Appl Artif Intell 116:105399

Article  Google Scholar 

Luo J, Cui W, Xu S, L. et al (2024) A cross-scale transformer and triple-view attention based domain-rectified transfer learning for EEG classification in RSVP tasks. IEEE Trans Neural Syst Rehabil Eng 32:672–683. https://doi.org/10.1109/TNSRE.2024.3359191

Article  PubMed  Google Scholar 

Mehmood I, Li H, Qarout Y et al (2023) Deep learning-based construction equipment operators’ mental fatigue classification using wearable EEG sensor data. Adv Eng Inform 56:101978

Article  Google Scholar 

Min J, Wang P, Hu J (2017) The original EEG data for driver fatigue detection. figshare. 10.6084/m9.figshare.5202739.v1

Yu Pan, Zeyong Su, Ao Liu, et al (2022) A unified weight initialization paradigm for tensorial convolutional neural networks. In: Proceedings of the international conference on machine learning, F, PMLR 162:17238–17257

Paulo JR, Pires G, Nunes UJ (2021) Cross-subject zero calibration driver’s drowsiness detection: exploring spatiotemporal image encoding of EEG signals for convolutional neural network classification. IEEE Trans Neural Syst Rehabil Eng 29:905–915

Article  PubMed  Google Scholar 

Santos CFGD, Papa JP (2022) Avoiding overfitting: a survey on regularization methods for convolutional neural networks. ACM Comput Surv (CSUR) 54(10s):1–25

Article  Google Scholar 

Song Y, Zheng Q, Liu B et al (2022) EEG conformer: convolutional transformer for EEG decoding and visualization. IEEE Trans Neural Syst Rehabil Eng 31:710–719

Article  Google Scholar 

Stancin I, Cifrek M, Jovic A (2021) A review of EEG signal features and their application in driver drowsiness detection systems. Sensors 21(11):3786

Article  PubMed  PubMed Central  Google Scholar 

Tan T-H, Chang Y-L, Wu J-R et al (2023) Convolutional neural network with multi-head attention for human activity recognition. IEEE Internet of Things J 12:3032–3043

Google Scholar 

Tang M, Li P, Zhang H et al (2024) HMS-TENet: a hierarchical multi-scale topological enhanced network based on EEG and EOG for driver vigilance estimation. Biomed Technol 8:92–103

Article  Google Scholar 

Tran Y, Craig A, Craig R et al (2020) The influence of mental fatigue on brain activity: evidence from a systematic review with meta-analyses. Psychophysiology 57(5):e13554

Article  PubMed  Google Scholar 

Tuncer T, Dogan S, Subasi A (2021) EEG-based driving fatigue detection using multilevel feature extraction and iterative hybrid feature selection. Biomed Signal Process Control 68:102591

Article  Google Scholar 

Wang H, Dragomir A, Abbasi NI et al (2018) A novel real-time driving fatigue detection system based on wireless dry EEG. Cogn Neurodyn 12(4):365–376

Article  PubMed  PubMed Central  Google Scholar 

Wang J, Xu Y, Tian J et al (2022) Driving fatigue detection with three non-hair-bearing EEG channels and modified transformer model. Entropy 24(12):1715

Article  PubMed  PubMed Central  Google Scholar 

Wang H et al (2023) A novel algorithmic structure of EEG channel attention combined with Swin transformer for motor patterns classification. IEEE Trans Neural Syst Rehabil Eng 31:3132–3141. https://doi.org/10.1109/TNSRE.2023.3297654

Article  PubMed  PubMed Central  Google Scholar 

Wang Z, Ouyang Y and Zeng H (2024) ARFN: an attention-based recurrent fuzzy network for EEG mental workload assessment. IEEE Trans Instrum Meas 73:1–14. https://doi.org/10.1109/TIM.2024.3369143

Article  PubMed  PubMed Central  Google Scholar 

Wu D, Wang X, Su J et al (2020) A labeling method for financial time series prediction based on trends. Entropy 22(10):1162

Article  PubMed  PubMed Central  Google Scholar 

Wu EQ, Xiong P, Tang Z-R et al (2021) Detecting dynamic behavior of brain fatigue through 3-d-CNN-LSTM. IEEE Trans Syst Man Cybern Syst 52(1):90–100

Article  Google Scholar 

Xie J, Zhang J, Sun J et al (2022) A transformer-based approach combining deep learning network and spatial-temporal information for raw EEG classification. IEEE Trans Neural Syst Rehabil Eng 30:2126–2136

Article  PubMed  Google Scholar 

Zeng C, Zhang J, Su Y et al (2024) Driver fatigue detection using heart rate variability features from 2-minute electrocardiogram signals while accounting for sex differences. Sensors 24(13):4316

Article 

留言 (0)

沒有登入
gif