Arifin, W. N., & Zahiruddin, W. M. (2017). Sample size calculation in animal studies using resource equation approach. Malaysian Journal of Medical Sciences, 24(5), 101–105. https://doi.org/10.21315/mjms2017.24.5.11
Cadena, A. J., & Rincon, F. (2024). Hypothermia and temperature modulation for intracerebral hemorrhage (ICH): Pathophysiology and translational applications. Frontiers in Neuroscience, 18, 1289705. https://doi.org/10.3389/fnins.2024.1289705
Article PubMed PubMed Central Google Scholar
Council, N. R. (2011). Guide for the care and use of laboratory animals (8th ed.). The National Academies Press.
Crooke, S. T., Liang, X. H., Baker, B. F., & Crooke, R. M. (2021). Antisense technology: A review. Journal of Biological Chemistry, 296, 100416. https://doi.org/10.1016/j.jbc.2021.100416
Article CAS PubMed PubMed Central Google Scholar
Ekkert, A., Sliachtenko, A., Utkus, A., & Jatuzis, D. (2022). Intracerebral hemorrhage genetics. Genes (Basel). https://doi.org/10.3390/genes13071250
Fatima, I., Sahar, A., Tariq, A., Naz, T., & Usman, M. (2024). Exploring the role of licorice and its derivatives in cell signaling pathway NF-kappaB and MAPK. J Nutr Metab, 2024, 9988167. https://doi.org/10.1155/2024/9988167
Article CAS PubMed PubMed Central Google Scholar
Heidarzadegan, A. R., Zarifkar, A., Sotoudeh, N., Namavar, M. R., & Zarifkar, A. H. (2022). Different paradigms of transcranial electrical stimulation improve motor function impairment and striatum tissue injuries in the collagenase-induced intracerebral hemorrhage rat model. BMC Neuroscience, 23(1), 6. https://doi.org/10.1186/s12868-022-00689-w
Article CAS PubMed PubMed Central Google Scholar
Huang, L. C., Liew, H. K., Cheng, H. Y., Peng, H. F., Yang, H. I., Kuo, J. S., et al. (2017). Collagenase-induced rat intra-striatal hemorrhage mimicking severe human intra-striatal hemorrhage. Chinese Journal of Physiology, 60(5), 259–266. https://doi.org/10.4077/CJP.2017.BAF478
Article CAS PubMed Google Scholar
Janke, C., & Montagnac, G. (2017). Causes and consequences of microtubule acetylation. Current Biology, 27(23), R1287–R1292. https://doi.org/10.1016/j.cub.2017.10.044
Article CAS PubMed Google Scholar
Jiang, L., Zhu, X., Yang, H., Chen, T., & Lv, K. (2020). Bioinformatics analysis discovers microtubular tubulin beta 6 class V (TUBB6) as a potential therapeutic target in glioblastoma. Frontiers in Genetics, 11, 566579. https://doi.org/10.3389/fgene.2020.566579
Article CAS PubMed PubMed Central Google Scholar
Jurgens, J. A., Barry, B. J., Chan, W. M., MacKinnon, S., Whitman, M. C., Matos Ruiz, P. M., et al. (2024). Expanding the genetics and phenotypes of ocular congenital cranial dysinnervation disorders. Genetics in Medicine. https://doi.org/10.1016/j.gim.2024.101216
Article PubMed PubMed Central Google Scholar
Khrunin, A. V., Khvorykh, G. V., Arapova, A. S., Kulinskaya, A. E., Koltsova, E. A., Petrova, E. A., et al. (2023). The study of the association of polymorphisms in LSP1, GPNMB, PDPN, TAGLN, TSPO, and TUBB6 genes with the risk and outcome of ischemic stroke in the russian population. Internet Journal Molecular Science. https://doi.org/10.3390/ijms24076831
Ko, D. C., & Jaslow, S. L. (2014). The marriage of quantitative genetics and cell biology: A novel screening approach reveals people have genetically encoded variation in microtubule stability. BioArchitecture, 4(2), 58–61. https://doi.org/10.4161/bioa.28481
Article PubMed PubMed Central Google Scholar
Law, B. M., Spain, V. A., Leinster, V. H., Chia, R., Beilina, A., Cho, H. J., et al. (2014). A direct interaction between leucine-rich repeat kinase 2 and specific beta-tubulin isoforms regulates tubulin acetylation. Journal of Biological Chemistry, 289(2), 895–908. https://doi.org/10.1074/jbc.M113.507913
Article CAS PubMed Google Scholar
Liew, H. K., Cheng, H. Y., Huang, L. C., Li, K. W., Peng, H. F., Yang, H. I., et al. (2016). Acute alcohol intoxication aggravates brain injury caused by intracerebral hemorrhage in rats. Journal of Stroke and Cerebrovascular Diseases, 25(1), 15–25. https://doi.org/10.1016/j.jstrokecerebrovasdis.2015.08.027
Liu, B., Liu, G., Li, C., Liu, S., & Sun, D. (2023). Resection of scar tissue in rats with spinal cord injury can promote the expression of betIII-tubulin in the injured area. World Neurosurgery, 170, e115–e126. https://doi.org/10.1016/j.wneu.2022.10.069
Mariani, M., Zannoni, G. F., Sioletic, S., Sieber, S., Martino, C., Martinelli, E., et al. (2012). Gender influences the class III and V beta-tubulin ability to predict poor outcome in colorectal cancer. Clinical Cancer Research, 18(10), 2964–2975. https://doi.org/10.1158/1078-0432.CCR-11-2318
Article CAS PubMed Google Scholar
Mayne, M., Ni, W., Yan, H. J., Xue, M., Johnston, J. B., Del Bigio, M. R., et al. (2001). Antisense oligodeoxynucleotide inhibition of tumor necrosis factor-alpha expression is neuroprotective after intracerebral hemorrhage. Stroke, 32(1), 240–248. https://doi.org/10.1161/01.str.32.1.240
Article CAS PubMed Google Scholar
Okauchi, M., Hua, Y., Keep, R. F., Morgenstern, L. B., Schallert, T., & Xi, G. (2010). Deferoxamine treatment for intracerebral hemorrhage in aged rats: Therapeutic time window and optimal duration. Stroke, 41(2), 375–382. https://doi.org/10.1161/STROKEAHA.109.569830
Article CAS PubMed Google Scholar
Peng, C., Wang, Y., Hu, Z., & Chen, C. (2024). Selective HDAC6 inhibition protects against blood-brain barrier dysfunction after intracerebral hemorrhage. CNS Neuroscience & Therapeutics, 30(3), e14429. https://doi.org/10.1111/cns.14429
Plastira, I., Bernhart, E., Joshi, L., Koyani, C. N., Strohmaier, H., Reicher, H., et al. (2020). MAPK signaling determines lysophosphatidic acid (LPA)-induced inflammation in microglia. Journal of Neuroinflammation, 17(1), 127. https://doi.org/10.1186/s12974-020-01809-1
Article CAS PubMed PubMed Central Google Scholar
Rajashekar, D., & Liang, J. W. (2024). Intracerebral Hemorrhage. In StatPearls. Treasure Island (FL) ineligible companies. Disclosure: John Liang declares no relevant financial relationships with ineligible companies.
Randazzo, D., Khalique, U., Belanto, J. J., Kenea, A., Talsness, D. M., Olthoff, J. T., et al. (2019). Persistent upregulation of the beta-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle. Human Molecular Genetics, 28(7), 1117–1135. https://doi.org/10.1093/hmg/ddy418
Article CAS PubMed Google Scholar
Salinas, R. E., Ogohara, C., Thomas, M. I., Shukla, K. P., Miller, S. I., & Ko, D. C. (2014). A cellular genome-wide association study reveals human variation in microtubule stability and a role in inflammatory cell death. Molecular Biology of the Cell, 25(1), 76–86. https://doi.org/10.1091/mbc.E13-06-0294
Article CAS PubMed PubMed Central Google Scholar
Schrag, M., & Kirshner, H. (2020). Management of intracerebral hemorrhage: JACC focus seminar. Journal of the American College of Cardiology, 75(15), 1819–1831. https://doi.org/10.1016/j.jacc.2019.10.066
Scoles, D. R., Minikel, E. V., & Pulst, S. M. (2019). Antisense oligonucleotides: A primer. Neurol Genet, 5(2), e323. https://doi.org/10.1212/NXG.0000000000000323
Article CAS PubMed PubMed Central Google Scholar
Serdar, C. C., Cihan, M., Yucel, D., & Serdar, M. A. (2021). Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem Med (Zagreb), 31(1), 010502. https://doi.org/10.11613/BM.2021.010502
Tamakoshi, K., Kawanaka, K., Onishi, H., Takamatsu, Y., & Ishida, K. (2016). Motor skills training improves sensorimotor dysfunction and increases microtubule-associated protein 2 mRNA expression in rats with intracerebral hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 25(8), 2071–2077. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.05.007
Thangameeran, S. I. M., Tsai, S. T., Liew, H. K., & Pang, C. Y. (2024). Examining transcriptomic alterations in rat models of intracerebral hemorrhage and severe intracerebral hemorrhage. Biomolecules. https://doi.org/10.3390/biom14060678
留言 (0)