Evolution of phenylalanine ammonia-lyase protein family from algae to angiosperm

Achnine L, Blancaflor EB, Rasmussen S, Dixon RA (2004) Colocalization of L-phenylalanine ammonia-lyase and cinnarnate 4-hydroxylase for metabolic channeling in phenylpropanoid biosynthesis. Plant Cell 16(11):3098–3109. https://doi.org/10.1105/tpc.104.024406

Article  CAS  PubMed  PubMed Central  Google Scholar 

Alazem M, Lin NS (2017) Antiviral Roles of Abscisic Acid in Plants. Front Plant Sci 8:10. https://doi.org/10.3389/fpls.2017.01760

Article  Google Scholar 

Ali AEE, Husselmann LH, Tabb DL, Ludidi N (2023) Comparative Proteomics Analysis between Maize and Sorghum Uncovers Important Proteins and Metabolic Pathways Mediating Drought Tolerance. Life-Basel 13(1):15. https://doi.org/10.3390/life13010170

Article  CAS  Google Scholar 

Bagal UR, Leebens-Mack JH, Lorenz WW, Dean JFD (2012) The phenylalanine ammonia lyase (PAL) gene family shows a gymnosperm-specific lineage. BMC Genomics 13:9. https://doi.org/10.1186/1471-2164-13-s3-s1

Article  Google Scholar 

Barakat A, Wall K, Leebens-Mack J, Wang YJ, Carlson JE, dePamphilis CW (2007) Large-scale identification of microRNAs from a basal eudicot (Eschscholzia californica) and conservation in flowering plants. Plant J 51(6):991–1003. https://doi.org/10.1111/j.1365-313X.2007.03197.x

Article  CAS  PubMed  Google Scholar 

Calabrese JC, Jordan DB, Boodhoo A, Sariaslani S, Vannelli T (2004) Crystal structure of phenylalanine ammonia lyase: Multiple helix dipoles implicated in catalysis. Biochemistry-Us 43(36):11403–11416. https://doi.org/10.1021/bi049053+

Article  CAS  Google Scholar 

Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020) Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62(1):25–54. https://doi.org/10.1111/jipb.12899

Article  CAS  PubMed  Google Scholar 

de Vries J, de Vries S, Slamovits CH, Rose LE, Archibald JM (2017) How Embryophytic is the Biosynthesis of Phenylpropanoids and their Derivatives in Streptophyte Algae? Plant Cell Physiol 58(5):934–945. https://doi.org/10.1093/pcp/pcx037

Article  CAS  PubMed  Google Scholar 

Dong CJ, Cao N, Zhang ZG, Shang QM (2016) Phenylalanine ammonia-lyase gene families in cucurbit species: Structure, evolution, and expression. J Integr Agr 15(6):1239–1255. https://doi.org/10.1016/s2095-3119(16)61329-1

Article  CAS  Google Scholar 

Duan L, Liu HB, Li XH, Xiao JH, Wang SP (2014) Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol Plantarum 152(3):486–500. https://doi.org/10.1111/ppl.12192

Article  CAS  Google Scholar 

Emiliani G, Fondi M, Fani R, Gribaldo S (2009) A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land. Biol Direct 4:12. https://doi.org/10.1186/1745-6150-4-7

Article  CAS  Google Scholar 

Ferrer JL, Austin MB, Stewart C, Noe JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Bioch 46(3):356–370. https://doi.org/10.1016/j.plaphy.2007.12.009

Article  CAS  Google Scholar 

Gao B, Chen MX, Li XS, Liang YQ, Zhang DY, Wood AJ, Oliver MJ, Zhang JH (2022) Ancestral gene duplications in mosses characterized by integrated phylogenomic analyses. J Syst Evol 60(1):144–159. https://doi.org/10.1111/jse.12683

Article  Google Scholar 

Gho YS, Kim SJ, Jung KH (2020) Phenylalanine ammonia-lyase family is closely associated with response to phosphate deficiency in rice. Genes Genomics 42(1):67–76. https://doi.org/10.1007/s13258-019-00879-7

Article  CAS  PubMed  Google Scholar 

Guan ML, Li CX, Shan XT, Chen F, Wang SF, Dixon RA, Zhao Q (2022) Dual Mechanisms of Coniferyl Alcohol in Phenylpropanoid Pathway Regulation. Front Plant Sci 13:11. https://doi.org/10.3389/fpls.2022.896540

Article  Google Scholar 

Guo WF, Jin L, Miao YH, He X, Hu Q, Guo K, Zhu LF, Zhang XL (2016) An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. Plant Mol Biol 91(3):305–318. https://doi.org/10.1007/s11103-016-0467-6

Article  CAS  PubMed  Google Scholar 

Hu RY, Li XD, Hu Y, Zhang RJ, Lv Q, Zhang M, Sheng XY, Zhao F, Chen ZJ, Ding YH, Yuan H, Wu XF, Xing S, Yan XY, Bao F, Wan P, Xiao LH, Wang XQ, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang CZ, Du HL, Lu HW, Gao Q, Cheng ZK, You HL, Xin PY, Chu JF, Huang CH, Liu Y, Dong SS, Zheng LS, Chen F, Deng L, Duan FZ, Zhao WJ, Li K, Li ZF, Li XR, Cui HJ, Zhang YE, Ma C, Zhu RL, Jia Y, Wang MZ, Hasebe M, Fu JZ, Goffinet B, Ma H, Rensing SA, Reski R, He YK (2023) Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 186(17):3558–3576. https://doi.org/10.1016/j.cell.2023.07.003

Article  CAS  PubMed  Google Scholar 

Huang JL, Gu M, Lai ZB, Fan BF, Shi K, Zhou YH, Yu JQ, Chen ZX (2010) Functional Analysis of the Arabidopsis PAL Gene Family in Plant Growth, Development, and Response to Environmental Stress. Plant Physiol 153(4):1526–1538. https://doi.org/10.1104/pp.110.157370

Article  CAS  PubMed  PubMed Central  Google Scholar 

Huang SJ, Lin SY, Wang TT, Hsu FC (2020) Combining acetic acid and ethanol as an anti-browning treatment for lettuce butt discoloration through repression of the activity and expression of phenylalanine ammonia lyase. Postharvest Biol Tec 164:111151. https://doi.org/10.1016/j.postharvbio.2020.111151

Article  CAS  Google Scholar 

Kawatra A, Dhankhar R, Mohanty A, Gulati P (2020) Biomedical applications of microbial phenylalanine ammonia lyase: Current status and future prospects. Biochimie 177:142–152. https://doi.org/10.1016/j.biochi.2020.08.009

Article  CAS  PubMed  Google Scholar 

Khandekar S, Leisner S (2011) Soluble silicon modulates expression of Arabidopsis thaliana genes involved in copper stress. J Plant Physiol 168(7):699–705. https://doi.org/10.1016/j.jplph.2010.09.009

Article  CAS  PubMed  Google Scholar 

Kim DS, Hwang BK (2014) An important role of the pepper phenylalanine ammonia-lyase gene (PAL1) in salicylic acid-dependent signalling of the defence response to microbial pathogens. J Exp Bot 65(9):2295–2306. https://doi.org/10.1093/jxb/eru109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kong JQ (2015) Phenylalanine ammonia-lyase, a key component used for phenylpropanoids production by metabolic engineering. Rsc Adv 5(77):62587–62603. https://doi.org/10.1039/c5ra08196c

Article  CAS  Google Scholar 

Kovacs K, Banoczi G, Varga A, Szabo I, Holczinger A, Hornyanszky G, Zagyva I, Paizs C, Vertessy BG, Poppe L (2014) Expression and Properties of the Highly Alkalophilic Phenylalanine Ammonia-Lyase of Thermophilic Rubrobacter xylanophilus. Plos One 9(1):e85943. https://doi.org/10.1371/journal.pone.0085943

Article  CAS  PubMed  PubMed Central  Google Scholar 

Leebens-Mack JH, Barker MS, Carpenter EJ, Deyholos MK, Gitzendanner MA, Graham SW, Grosse I, Li Z, Melkonian M, Mirarab S, Porsch M, Quint M, Rensing SA, Soltis DE, Soltis PS, Stevenson DW, Ullrich KK, Wickett NJ, DeGironimo L, Edger PP, Jordon-Thaden IE, Joya S, Liu T, Melkonian B, Miles NW, Pokorny L, Quigley C, Thomas P, Villarreal JC, Augustin MM, Barrett MD, Baucom RS, Beerling DJ, Benstein RM, Biffin E, Brockington SF, Burge DO, Burris JN, Burris KP, Burtet-Sarramegna V, Caicedo AL, Cannon SB, Cebi Z, Chang Y, Chater C, Cheeseman JM, Chen T, Clarke ND, Clayton H, Covshoff S, Crandall-Stotler BJ, Cross H, dePamphilis CW, Der JP, Determann R, Dickson RC, Di Stilio VS, Ellis S, Fast E, Feja N, Field KJ, Filatov DA, Finnegan PM, Floyd SK, Fogliani B, Garcia N, Gateble G, Godden GT, Goh F, Greiner S, Harkess A, Heaney JM, Helliwell KE, Heyduk K, Hibberd JM, Hodel RGJ, Hollingsworth PM, Johnson MTJ, Jost R, Joyce B, Kapralov MV, Kazamia E, Kellogg EA, Koch MA, Von Konrat M, Konyves K, Kutchan TM, Lam V, Larsson A, Leitch AR, Lentz R, Li FW, Lowe AJ, Ludwig M, Manos PS, Mavrodiev E, McCormick MK, McKain M, McLellan T, McNeal JR, Miller RE, Nelson MN, Peng YH, Ralph P, Real D, Riggins CW, Ruhsam M, Sage RF, Sakai AK, Scascitella M, Schilling EE, Schlosser EM, Sederoff H, Servick S, Sessa EB, Shaw AJ, Shaw SW, Sigel EM, Skema C, Smith AG, Smithson A, Stewart CN, Stinchcombe JR, Szovenyi P, Tate JA, Tiebel H, Trapnell D, Villegente M, Wang CN, Weller SG, Wenzel M, Weststrand S, Westwood JH, Whigham DF, Wu SX, Wulff AS, Yang Y, Zhu D, Zhuang CL, Zuidof J, Chase MW, Pires JC, Rothfels CJ, Yu J, Chen C, Chen L, Cheng SF, Li JJ, Li R, Li X, Lu HR, Ou YX, Sun X, Tan XM, Tang JB, Tian ZJ, Wang F, Wang J, Wei XF, Xu X, Yan ZX, Yang F, Zhong XN, Zhou FY, Zhu Y, Zhang Y, Ayyampalayam S, Barkman TJ, Nguyen NP, Matasci N, Nelson DR, Sayyari E, Wafula EK, Walls RL, Warnow T, An H, Arrigo N, Baniaga AE, Galuska S, Jorgensen SA, Kidder TI, Kong HH, Lu-Irving P, Marx HE, Qi XS, Reardon CR, Sutherland BL, Tiley GP, Welles SR, Yu RP, Zhan S, Gramzow L, Theissen G, Wong GKS, T One Thousand Plant (2019) One thousand plant transcriptomes and the phylogenomics of green plants. Nature 574(7780):679. https://doi.org/10.1038/s41586-019-1693-2

Article  CAS  Google Scholar 

Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ, Wang JW (2021) Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 19(2):e3001044. https://doi.org/10.1371/journal.pbio.3001044

Article  CAS  PubMed  PubMed Central 

留言 (0)

沒有登入
gif