SMARCB1-driven EGFR-GLI1 epigenetic alterations in lung cancer progression and therapy are differentially modulated by MEOX2 and GLI-1

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

Article  PubMed  Google Scholar 

Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CVE, et al. The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development. 2003;130:4655–64.

Article  CAS  PubMed  Google Scholar 

Kim T-Y, Park J-K, Prasad Aryal Y, Lee E-S, Neupane S, Sung S, et al. Facilitation of bone healing processes based on the developmental function of Meox2 in tooth loss lesion. Int J Mol Sci. 2020;21:8701.

Article  PubMed  PubMed Central  Google Scholar 

Armas-López L, Piña-Sánchez P, Arrieta O, de Alba EG, Ortiz-Quintero B, Santillán-Doherty P, et al. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget. 2017;8:67056–81.

Article  PubMed  PubMed Central  Google Scholar 

Cui Y, Cui C, Yang Z, Ni W, Jin Y, Xuan Y. Gli1 expression in cancer stem-like cells predicts poor prognosis in patients with lung squamous cell carcinoma. Exp Mol Pathol. 2017;102:347–53.

Article  CAS  PubMed  Google Scholar 

Panneerselvam J, Srivastava A, Mehta M, Chen A, Zhao YD, Munshi A, et al. IL-24 inhibits lung cancer growth by suppressing GLI1 and inducing DNA damage. Cancers. 2019;11:1879.

Article  PubMed  PubMed Central  Google Scholar 

Bermudez O, Hennen E, Koch I, Lindner M, Eickelberg O. Gli1 mediates lung cancer cell proliferation and sonic hedgehog-dependent mesenchymal cell activation. PLoS ONE. 2013;8:e63226.

Article  PubMed  PubMed Central  Google Scholar 

Peralta-Arrieta I, Trejo-Villegas OA, Armas-López L, Ceja-Rangel HA, Ordóñez-Luna MdelC, Pineda-Villegas P, et al. Failure to EGFR-TKI-based therapy and tumoural progression are promoted by MEOX2/GLI1-mediated epigenetic regulation of EGFR in the human lung cancer. Eur J Cancer. 2022;160:189–205.

Article  CAS  PubMed  Google Scholar 

Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally approved EGFR inhibitors: insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules. 2021;26:6677.

Article  PubMed  PubMed Central  Google Scholar 

Johnson M, Garassino MC, Mok T, Mitsudomi T. Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: focus on novel therapies. Lung Cancer. 2022;170:41–51.

Article  CAS  PubMed  Google Scholar 

Wang D, Zhou J, Fang W, Huang C, Chen Z, Fan M, et al. A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioact Mater. 2022;13:312–23.

CAS  PubMed  Google Scholar 

Roberts CWM, Galusha SA, McMenamin ME, Fletcher CDM, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA. 2000;97:13796–800.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genet. 2014;207:358–64.

Article  CAS  PubMed  Google Scholar 

Yoshida K, Fujiwara Y, Goto Y, Kohno T, Yoshida A, Tsuta K, et al. The first case of SMARCB1 (INI1)—deficient squamous cell carcinoma of the pleura: a case report. BMC Cancer. 2018;18:398.

Article  PubMed  PubMed Central  Google Scholar 

Alessi JV, Ricciuti B, Spurr LF, Gupta H, Li YY, Glass C, et al. SMARCA4 and other SWItch/sucrose nonfermentable family genomic alterations in NSCLC: clinicopathologic characteristics and outcomes to immune checkpoint inhibition. J Thorac Oncol. 2021;16:1176–87.

Article  CAS  PubMed  Google Scholar 

Darr J, Klochendler A, Isaac S, Geiger T, Eden A. Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in malignant rhabdoid tumor cells. Mol Cancer. 2015;14:167.

Article  PubMed  PubMed Central  Google Scholar 

Cooper GW, Hong AL. SMARCB1-deficient cancers: novel molecular insights and therapeutic vulnerabilities. Cancers. 2022;14:3645.

Article  PubMed  PubMed Central  Google Scholar 

Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272.

Article  PubMed  PubMed Central  Google Scholar 

Cenik BK, Shilatifard A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 2021;22:38–58.

Article  CAS  PubMed  Google Scholar 

Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Peng L, Li J, Wu J, Xu B, Wang Z, Giamas G, et al. A pan-cancer analysis of SMARCA4 alterations in human cancers. Front Immunol. 2021;12:762598.

Article  PubMed  PubMed Central  Google Scholar 

Peinado P, Andrades A, Cuadros M, Rodriguez MI, Coira IF, Garcia DJ, et al. Comprehensive analysis of SWI/SNF inactivation in lung adenocarcinoma cell models. Cancers. 2020;12:3712.

Article  PubMed  PubMed Central  Google Scholar 

Trejo-Villegas OA, Heijink IH, Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: epigenetic insights and clinical perspectives in human lung disease therapy. Mol Ther. 2024;32:2470–88.

Article  CAS  PubMed  Google Scholar 

Weisberg E, Chowdhury B, Meng C, Case AE, Ni W, Garg S, et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J. 2022;12:110.

Article  PubMed  PubMed Central  Google Scholar 

Michel BC, D’Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:1410–20.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Hohmann AF, Martin LJ, Minder JL, Roe J-S, Shi J, Steurer S, et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol. 2016;12:672–9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, et al. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun. 2023;14:7762.

Article  PubMed  PubMed Central  Google Scholar 

Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet. 2008;182:1–11.

Article  CAS  PubMed  Google Scholar 

Xie D, Zhang S, Jiang X, Huang W, He Y, Li Y, et al. Circ_CSPP1 regulates the development of non-small cell lung cancer via the miR-486-3p/BRD9 axis. Biochem Genet. 2023;61:1–20.

Article  CAS  PubMed  Google Scholar 

Huang H, Wang Y, Li Q, Fei X, Ma H, Hu R. miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett. 2019;446:81–9.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif