Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.
Mankoo BS, Skuntz S, Harrigan I, Grigorieva E, Candia A, Wright CVE, et al. The concerted action of Meox homeobox genes is required upstream of genetic pathways essential for the formation, patterning and differentiation of somites. Development. 2003;130:4655–64.
Article CAS PubMed Google Scholar
Kim T-Y, Park J-K, Prasad Aryal Y, Lee E-S, Neupane S, Sung S, et al. Facilitation of bone healing processes based on the developmental function of Meox2 in tooth loss lesion. Int J Mol Sci. 2020;21:8701.
Article PubMed PubMed Central Google Scholar
Armas-López L, Piña-Sánchez P, Arrieta O, de Alba EG, Ortiz-Quintero B, Santillán-Doherty P, et al. Epigenomic study identifies a novel mesenchyme homeobox2-GLI1 transcription axis involved in cancer drug resistance, overall survival and therapy prognosis in lung cancer patients. Oncotarget. 2017;8:67056–81.
Article PubMed PubMed Central Google Scholar
Cui Y, Cui C, Yang Z, Ni W, Jin Y, Xuan Y. Gli1 expression in cancer stem-like cells predicts poor prognosis in patients with lung squamous cell carcinoma. Exp Mol Pathol. 2017;102:347–53.
Article CAS PubMed Google Scholar
Panneerselvam J, Srivastava A, Mehta M, Chen A, Zhao YD, Munshi A, et al. IL-24 inhibits lung cancer growth by suppressing GLI1 and inducing DNA damage. Cancers. 2019;11:1879.
Article PubMed PubMed Central Google Scholar
Bermudez O, Hennen E, Koch I, Lindner M, Eickelberg O. Gli1 mediates lung cancer cell proliferation and sonic hedgehog-dependent mesenchymal cell activation. PLoS ONE. 2013;8:e63226.
Article PubMed PubMed Central Google Scholar
Peralta-Arrieta I, Trejo-Villegas OA, Armas-López L, Ceja-Rangel HA, Ordóñez-Luna MdelC, Pineda-Villegas P, et al. Failure to EGFR-TKI-based therapy and tumoural progression are promoted by MEOX2/GLI1-mediated epigenetic regulation of EGFR in the human lung cancer. Eur J Cancer. 2022;160:189–205.
Article CAS PubMed Google Scholar
Abourehab MAS, Alqahtani AM, Youssif BGM, Gouda AM. Globally approved EGFR inhibitors: insights into their syntheses, target kinases, biological activities, receptor interactions, and metabolism. Molecules. 2021;26:6677.
Article PubMed PubMed Central Google Scholar
Johnson M, Garassino MC, Mok T, Mitsudomi T. Treatment strategies and outcomes for patients with EGFR-mutant non-small cell lung cancer resistant to EGFR tyrosine kinase inhibitors: focus on novel therapies. Lung Cancer. 2022;170:41–51.
Article CAS PubMed Google Scholar
Wang D, Zhou J, Fang W, Huang C, Chen Z, Fan M, et al. A multifunctional nanotheranostic agent potentiates erlotinib to EGFR wild-type non-small cell lung cancer. Bioact Mater. 2022;13:312–23.
Roberts CWM, Galusha SA, McMenamin ME, Fletcher CDM, Orkin SH. Haploinsufficiency of Snf5 (integrase interactor 1) predisposes to malignant rhabdoid tumors in mice. Proc Natl Acad Sci USA. 2000;97:13796–800.
Article CAS PubMed PubMed Central Google Scholar
Margol AS, Judkins AR. Pathology and diagnosis of SMARCB1-deficient tumors. Cancer Genet. 2014;207:358–64.
Article CAS PubMed Google Scholar
Yoshida K, Fujiwara Y, Goto Y, Kohno T, Yoshida A, Tsuta K, et al. The first case of SMARCB1 (INI1)—deficient squamous cell carcinoma of the pleura: a case report. BMC Cancer. 2018;18:398.
Article PubMed PubMed Central Google Scholar
Alessi JV, Ricciuti B, Spurr LF, Gupta H, Li YY, Glass C, et al. SMARCA4 and other SWItch/sucrose nonfermentable family genomic alterations in NSCLC: clinicopathologic characteristics and outcomes to immune checkpoint inhibition. J Thorac Oncol. 2021;16:1176–87.
Article CAS PubMed Google Scholar
Darr J, Klochendler A, Isaac S, Geiger T, Eden A. Phosphoproteomic analysis reveals Smarcb1 dependent EGFR signaling in malignant rhabdoid tumor cells. Mol Cancer. 2015;14:167.
Article PubMed PubMed Central Google Scholar
Cooper GW, Hong AL. SMARCB1-deficient cancers: novel molecular insights and therapeutic vulnerabilities. Cancers. 2022;14:3645.
Article PubMed PubMed Central Google Scholar
Mashtalir N, D’Avino AR, Michel BC, Luo J, Pan J, Otto JE, et al. Modular organization and assembly of SWI/SNF family chromatin remodeling complexes. Cell. 2018;175:1272.
Article PubMed PubMed Central Google Scholar
Cenik BK, Shilatifard A. COMPASS and SWI/SNF complexes in development and disease. Nat Rev Genet. 2021;22:38–58.
Article CAS PubMed Google Scholar
Kadoch C, Hargreaves DC, Hodges C, Elias L, Ho L, Ranish J, et al. Proteomic and bioinformatic analysis of mammalian SWI/SNF complexes identifies extensive roles in human malignancy. Nat Genet. 2013;45:592–601.
Article CAS PubMed PubMed Central Google Scholar
Peng L, Li J, Wu J, Xu B, Wang Z, Giamas G, et al. A pan-cancer analysis of SMARCA4 alterations in human cancers. Front Immunol. 2021;12:762598.
Article PubMed PubMed Central Google Scholar
Peinado P, Andrades A, Cuadros M, Rodriguez MI, Coira IF, Garcia DJ, et al. Comprehensive analysis of SWI/SNF inactivation in lung adenocarcinoma cell models. Cancers. 2020;12:3712.
Article PubMed PubMed Central Google Scholar
Trejo-Villegas OA, Heijink IH, Ávila-Moreno F. Preclinical evidence in the assembly of mammalian SWI/SNF complexes: epigenetic insights and clinical perspectives in human lung disease therapy. Mol Ther. 2024;32:2470–88.
Article CAS PubMed Google Scholar
Weisberg E, Chowdhury B, Meng C, Case AE, Ni W, Garg S, et al. BRD9 degraders as chemosensitizers in acute leukemia and multiple myeloma. Blood Cancer J. 2022;12:110.
Article PubMed PubMed Central Google Scholar
Michel BC, D’Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:1410–20.
Article CAS PubMed PubMed Central Google Scholar
Hohmann AF, Martin LJ, Minder JL, Roe J-S, Shi J, Steurer S, et al. Sensitivity and engineered resistance of myeloid leukemia cells to BRD9 inhibition. Nat Chem Biol. 2016;12:672–9.
Article CAS PubMed PubMed Central Google Scholar
Liu NQ, Paassen I, Custers L, Zeller P, Teunissen H, Ayyildiz D, et al. SMARCB1 loss activates patient-specific distal oncogenic enhancers in malignant rhabdoid tumors. Nat Commun. 2023;14:7762.
Article PubMed PubMed Central Google Scholar
Kang JU, Koo SH, Kwon KC, Park JW, Kim JM. Gain at chromosomal region 5p15.33, containing TERT, is the most frequent genetic event in early stages of non-small cell lung cancer. Cancer Genet Cytogenet. 2008;182:1–11.
Article CAS PubMed Google Scholar
Xie D, Zhang S, Jiang X, Huang W, He Y, Li Y, et al. Circ_CSPP1 regulates the development of non-small cell lung cancer via the miR-486-3p/BRD9 axis. Biochem Genet. 2023;61:1–20.
Article CAS PubMed Google Scholar
Huang H, Wang Y, Li Q, Fei X, Ma H, Hu R. miR-140-3p functions as a tumor suppressor in squamous cell lung cancer by regulating BRD9. Cancer Lett. 2019;446:81–9.
留言 (0)